Skip to main content
Log in

N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrolysis of seawater offers a highly promising and sustainable route to attain carbon-neutral hydrogen energy without demanding on high-purity water resource. However, it is severely limited by the undesirable chlorine oxidation reaction (ClOR) on the anode and the releasing toxic chlorine species, inducing anode corrosion and multiple pollutions to reduce the efficiency and sustainability of this technology. The effective way is to limit the overpotential of oxygen evolution reaction (OER) below 480 mV and thus suppress the ClOR. Herein, we demonstrate that nitrogen-doped carbon dots strongly coupled NiFe layered double hydroxide nanosheet arrays on Ni foam (N-CDs/NiFe-LDH/NF) can efficiently facilitate OER with an ultralow overpotential of 260 mV to deliver the geometric current density of 100 mA·cm−2 and a Tafel slope of as low as 43.4 mV·dec−1 in 1.0 M KOH. More importantly, the N-CDs/NiFe-LDH/NF electrode at 100 mA·cm−2 shows overpotentials of 285 and 273 mV, respectively, by utilizing 1.0 M KOH with 0.5 M NaCl and 1.0 M KOH with 1.0 M NaCl as the simulated seawater, well avoid triggering ClOR. Notably, despite the complex environment of real seawater, N-CDs/NiFe-LDH/NF still effectively promotes alkaline seawater (1.0 M KOH + seawater) electrolysis with a lifetime longer than 50 and 20 h, respectively, in 1.0 M KOH and alkaline seawater electrolytes. The investigation result reveals that M-N-C bonding generated between N-CDs and NiFe-LDH intrinsically optimizes the charge transfer efficiency, further promoting the OER kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.

    CAS  Google Scholar 

  2. Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; Xing W. et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule 2021, 5, 2164–2176.

    CAS  Google Scholar 

  3. Zhang, N.; Chai, Y. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 2021, 14, 4647–4671.

    CAS  Google Scholar 

  4. Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

    Google Scholar 

  5. Chang, J. W.; Yu, C.; Song, X. D.; Tan, X. Y.; Ding, Y. W.; Zhao, Z. B.; Qiu, J. S. A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction. Angew. Chem., Int. Ed. 2021, 60, 3587–3595.

    CAS  Google Scholar 

  6. Souza, A. S.; Bezerra, L. S.; Cardoso, E. S. F.; Fortunato, G. V.; Maia, G. Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER. J. Mater. Chem. A 2021, 9, 11255–11267.

    CAS  Google Scholar 

  7. Tang, T. M.; Zhang, Q. Q.; Bai, X.; Wang, Z. L.; Guan, J. P. Enhanced oxygen evolution activity on mesoporous cobalt-iron oxides. Chem. Commun. 2021, 57, 11843–11846.

    CAS  Google Scholar 

  8. Fan, Y. X.; Zhang, X. D.; Zhang, Y. J.; Xie, X.; Ding, J.; Cai, J. L.; Li, B. J.; Lv, H. L.; Liu, L. Y.; Zhu, M. M. et al. Decoration of Ru/RuO2 hybrid nanoparticles on MoO2 plane as bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2021, 604, 508–516.

    CAS  Google Scholar 

  9. Bahadur, A.; Hussain, W.; Iqbal, S.; Ullah, F.; Shoaib, M.; Liu, G. C.; Feng, K. J. A morphology controlled surface sulfurized CoMn2O4 microspike electrocatalyst for water splitting with excellent OER rate for binder-free electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 12255–12264.

    CAS  Google Scholar 

  10. Chen, Y. Y.; Xu, Y.; Niu, S.; Yan, J.; Wu, Y. Y.; Du, F. K.; Zhao, Y. Z.; Zhu, Z. R.; Jiang, Z. J.; Tan, X. C. A highly efficient Fe-Ni-S/NF hybrid electrode for promoting oxygen evolution performance. Chem. Commun. 2021, 57, 4572–4575.

    CAS  Google Scholar 

  11. Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

    CAS  Google Scholar 

  12. Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498.

    CAS  Google Scholar 

  13. Chang, J. F.; Wang, G. Z.; Yang, Z. Z.; Li, B. Y.; Wang, Q.; Kuliiev, R.; Orlovskaya, N.; Gu, M.; Du, Y. G.; Wang, G. F. et al. Dualdoping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, 2101425.

    CAS  Google Scholar 

  14. Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.

    CAS  Google Scholar 

  15. Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

    CAS  Google Scholar 

  16. Xiang, K.; Song, Z. X.; Wu, D.; Deng, X. H.; Wang, X. W.; You, W.; Peng, Z. K.; Wang, L.; Luo, J. L.; Fu, X. Z. Bifunctional Pt-Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A 2021, 9, 6316–6324.

    CAS  Google Scholar 

  17. Hu, Y. M.; Liu, W. J.; Jiang, K.; Xu, L.; Guan, M. L.; Bao, J.; Ji, H. B.; Li, H. M. Constructing a CeO2−x@CoFe-layered double hydroxide heterostructure as an improved electrocatalyst for highly efficient water oxidation. Inorg. Chem. Front. 2020, 7, 4461–4468.

    CAS  Google Scholar 

  18. Chen, H. J.; Zou, Y. H.; Li, J.; Zhang, K. W.; Xia, Y. Z.; Hui, B.; Yang, D. J. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B:Environ. 2021, 293, 120215.

    CAS  Google Scholar 

  19. Zhou, L.; Zhang, C.; Zhang, Y. Q.; Li, Z. H.; Shao, M. F. Host modification of layered double hydroxide electrocatalyst to boost the thermodynamic and kinetic activity of oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009743.

    CAS  Google Scholar 

  20. Dresp, S.; Dionigi, F.; Klingenhof, M.; Merzdorf, T.; Schmies, H.; Drnec, J.; Poulain, A.; Strasser, P. Molecular understanding of the impact of saline contaminants and alkaline pH on NiFe layered double hydroxide oxygen evolution catalysts. ACS Catal. 2021, 11, 6800–6809.

    CAS  Google Scholar 

  21. Chen, W.; Wu, B. B.; Wang, Y. Y.; Zhou, W.; Li, Y. Y.; Liu, T. Y.; Xie, C.; Xu, L. T.; Du, S. Q.; Song, M. L. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440.

    CAS  Google Scholar 

  22. Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 24612–24619.

    CAS  Google Scholar 

  23. Ding, P.; Meng, C. Q.; Liang, J.; Li, T. S.; Wang, Y.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Asiri, A. M.; Lu, S. Y. et al. NiFe layered-double-hydroxide nanosheet arrays on graphite felt: A 3D electrocatalyst for highly efficient water oxidation in alkaline media. Inorg. Chem. 2021, 60, 12703–12708.

    CAS  Google Scholar 

  24. Chen W. Z.; Zhang M.; Liu Y.; Yao X.; Liu P. Y.; Liu Z. L.; He J. L.; Wang Y. Q. Super-hydrophilic MgO/NiCo2S4 heterostructure for high-efficient oxygen evolution reaction in neutral electrolytes. Appl. Catal. B: Environ. 2022, 312–121432.

    Google Scholar 

  25. Ji, X. X.; Lin, Y. H.; Zeng, J.; Ren, Z. H.; Lin, Z. J.; Mu, Y. B.; Qiu, Y. J.; Yu, J. Graphene/MoS2/FeCoNi (OH), and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat. Commun. 2021, 12, 1380.

    CAS  Google Scholar 

  26. Liu, H.; Liu, Z. H.; Wang, Y.; Zhang, J. Q.; Yang, Z. X.; Hu, H.; Zhao, Q. S.; Ning, H.; Zhi, L. J.; Wu, M. B. Carbon dots-oriented synthesis of fungus-like CoP microspheres as a bifunctional electrocatalyst for efficient overall water splitting. Carbon 2021, 182, 327–334.

    CAS  Google Scholar 

  27. Yang, M. X.; Feng, T. L.; Chen, Y. X.; Liu, J. J.; Zhao, X. H.; Yang, B. Synchronously integration of Co, Fe dual-metal doping in Ru@C and CDs for boosted water splitting performances in alkaline media. Appl. Catal. B:Environ. 2020, 267, 118657.

    CAS  Google Scholar 

  28. Chang, J. W.; Song, X. D.; Yu, C.; Huang, H. W.; Hong, J. F.; Ding, Y. W.; Huang, H. L.; Yu, J. H.; Tan, X. Y.; Zhao, Z. B. et al. Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction. Nano Energy 2020, 69, 104377.

    CAS  Google Scholar 

  29. Yu, J. K.; Song, H. Q.; Li, X.; Tang, L.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Computational studies on carbon dots electrocatalysis: A review. Adv. Funct. Mater. 2021, 31, 2107196.

    CAS  Google Scholar 

  30. Song, H. Q.; Cheng, Y. J.; Li, B. J.; Fan, Y. P.; Liu, B. Z.; Tang, Z. Y.; Lu, S. Y. Carbon dots and RuP2 nanohybrid as an efficient bifunctional catalyst for electrochemical hydrogen evolution reaction and hydrolysis of ammonia borane. ACS Sustainable Chem. Eng. 2020, 8, 3995–4002.

    CAS  Google Scholar 

  31. Gu, X. Q.; Chen, Z. M.; Li, Y.; Wu, J.; Wang, X.; Huang, H.; Liu, Y.; Dong, B.; Shao, M. W.; Kang, Z. H. Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 24814–24823.

    CAS  Google Scholar 

  32. Liu, Y. H.; Ge, R. Y.; Chen, Y. Y.; Huang, M. Q.; Zhu, R. J.; Li, W. X.; Liu, Y.; Feng, L. Y.; Che, R. C. Urchin-like cobalt hydroxide coupled with N-doped carbon dots hybrid for enhanced electrocatalytic water oxidation. Chem. Eng. J. 2021, 420, 127598.

    CAS  Google Scholar 

  33. Feng, T. L.; Zeng, Q. S.; Lu, S. Y.; Yang, M. X.; Tao, S. Y.; Chen, Y. X.; Zhao, Y.; Yang, B. Morphological and interfacial engineering of cobalt-based electrocatalysts by carbon dots for enhanced water splitting. ACS Sustainable Chem. Eng. 2019, 7, 7047–7057.

    CAS  Google Scholar 

  34. Wang, L.; Wen, Y. Z.; Ji, Y. J.; Cao, H. J.; Li, S. Y.; He, S. S.; Bai, H. P.; Liu, G. J.; Zhang, L. S.; Bao, H. L. et al. The 3d-5d orbital repulsion of transition metals in oxyhydroxide catalysts facilitates water oxidation. J. Mater. Chem. A 2019, 7, 14455–14461.

    CAS  Google Scholar 

  35. Wang, Z. P.; Zhang, J. H.; Yu, Q. Y.; Yang, H. Y.; Chen, X.; Yuan, X.; Huang, K.; Xiong, X. L. Synthesis of 3D CoO nanowires supported NiFe layered double hydroxide using an atmospheric pressure microplasma for high-performance oxygen evolution reaction. Chem. Eng. J. 2021, 410, 128366.

    CAS  Google Scholar 

  36. Chang, J. W.; Song, X. D.; Yu, C.; Yu, J. H.; Ding, Y. W.; Yao, C.; Zhao, Z. B.; Qiu, J. S. Hydrogen-bonding triggered assembly to configure hollow carbon nanosheets for highly efficient Tri-iodide reduction. Adv. Funct. Mater. 2020, 30, 2006270.

    CAS  Google Scholar 

  37. Sun, C. B.; Ding, J.; Wang, H. Z.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Cobalt sulfides constructed heterogeneous interfaces decorated on N, S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. J. Mater. Chem. A 2021, 9, 13926–13935.

    CAS  Google Scholar 

  38. Wang, W.; Liu, Y. C.; Li, J.; Luo, J.; Fu, L.; Chen, S. L. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J. Mater. Chem. A 2018, 6, 14299–14306.

    CAS  Google Scholar 

  39. Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

    Google Scholar 

  40. Li, W. M.; Chen, S. H.; Zhong, M. X.; Wang, C.; Lu, X. F. Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction. Chem. Eng. J. 2021, 415, 128879.

    CAS  Google Scholar 

  41. Ni, Y. M.; Yao, L. H.; Wang, Y.; Liu, B.; Cao, M. H.; Hu, C. W. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core—shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale 2017, 9, 11596–11604.

    CAS  Google Scholar 

  42. Liu, X. J.; Li, S. Z.; Akinwolemiwa, B.; Hu, D.; Wu, T.; Peng, C. Low-crystalline transition metal oxide/hydroxide on MWCNT by Fenton-reaction-inspired green synthesis for lithium ion battery and OER electrocatalysis. Electrochim. Acta 2021, 387, 138559.

    CAS  Google Scholar 

  43. Lei, H.; Wang, Z. L.; Yang, F.; Huang, X. Q.; Liu, J. H.; Liang, Y. Y.; Xie, J. P.; Javed, M. S.; Lu, X. H.; Tan, S. Z. et al. NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 2020, 68, 104293.

    CAS  Google Scholar 

  44. Xie, X. Y.; Shang, L.; Shi, R.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, T. R. Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries. Nanoscale 2020, 12, 13129–13136.

    CAS  Google Scholar 

  45. Li, Y. M.; He, H. Y.; Fu, W.; Mu, C. Z.; Tang, X. Z.; Liu, Z.; Chi, D. Z.; Hu, X. In-grown structure of NiFe mixed metal oxides and CNT hybrid catalysts for oxygen evolution reaction. Chem. Commun. 2016, 52, 1439–1442.

    CAS  Google Scholar 

  46. Niu, Y. L.; Teng, X.; Gong, S. Q.; Chen, Z. F. A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn-air batteries. J. Mater. Chem. A 2020, 8, 13725–13734.

    CAS  Google Scholar 

  47. Yue, X. Y.; Song, C. S.; Yan, Z. Y.; Shen, X. P.; Ke, W. T.; Ji, Z. Y.; Zhu, G. X.; Yuan, A. H.; Zhu, J.; Li, B. L. Reduced graphene oxide supported nitrogen-doped porous carbon-coated NiFe alloy composite with excellent electrocatalytic activity for oxygen evolution reaction. Appl. Surf. Sci. 2019, 493, 963–974.

    CAS  Google Scholar 

  48. Yi, L. Y.; Niu, Y. L.; Feng, B. M.; Zhao, M.; Hu, W. H. Simultaneous phase transformation and doping via a unique photochemical-electrochemical strategy to achieve a highly active Fe-doped Ni oxyhydroxide oxygen evolution catalyst. J. Mater. Chem. A 2021, 9, 4213–4220.

    CAS  Google Scholar 

  49. Qiao, H. Y.; Yang, Y.; Dai, X. P.; Zhao, H. H.; Yong, J. X.; Yu, L.; Luan, X. B.; Cui, M. L.; Zhang, X.; Huang, X. L. Amorphous (Fe) Ni-MOF-derived hollow (bi) metal/oxide@N-graphene polyhedron as effectively bifunctional catalysts in overall alkaline water splitting. Electrochim. Acta 2019, 318, 430–439.

    CAS  Google Scholar 

  50. Zhu, X. L.; Tang, C.; Wang, H. F.; Zhang, Q.; Yang, C. H.; Wei, F. Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. J. Mater. Chem. A 2015, 3, 24540–24546.

    CAS  Google Scholar 

  51. Du, L.; Luo, L. L.; Feng, Z. X.; Engelhard, M.; Xie, X. H.; Han, B. H.; Sun, J. M.; Zhang, J. H.; Yin, G. P.; Wang, C. M. et al. Nitrogen-doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. Nano Energy 2017, 39, 245–252.

    CAS  Google Scholar 

  52. Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

    CAS  Google Scholar 

  53. Zhou, Y.; Zhang, W. B.; Hu, J. L.; Li, D.; Yin, X.; Gao, Q. S. Inherent oxygen vacancies boost surface reconstruction of ultrathin Ni-Fe layered-double-hydroxides toward efficient electrocatalytic oxygen evolution. ACS Sustainable Chem. Eng. 2021, 9, 7390–7399.

    CAS  Google Scholar 

  54. Wang, X. H.; Ling, Y.; Wu, B.; Li, B. L.; Li, X. L.; Lei, J. L.; Li, N. B.; Luo, H. Q. Doping modification, defects construction, and surface engineering: Design of cost-effective high-performance electrocatalysts and their application in alkaline seawater splitting. Nano Energy 2021, 87, 106160.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52122308, 21905253, and 51973200), and the Natural Science Foundation of Henan (No. 202300410372).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangwei Chang or Siyu Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, P., Song, H., Chang, J. et al. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 15, 7063–7070 (2022). https://doi.org/10.1007/s12274-022-4377-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4377-4

Keywords

Navigation