Skip to main content
Log in

Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible multifunctional polymer-based electromagnetic interference (EMI) shielding composite films have important application values in the fields of 5G communication technology, wearable electronic devices and artificial intelligence. In this work, Fe3O4/polyamic acid (PAA) nanofiber films are prepared by in-situ polymerization and electrospinning technology, and Ti3C2Tx nanosheets are deposited on the surface of the Fe3O4/PAA nanofiber films via vacuum-assisted filtration. Then, Janus Ti3C2Tx-(Fe3O4/polyimide (PI)) composite films are obtained by thermal imidization. The two sides of the Janus films exhibit completely different properties. The Fe3O4/PI side has excellent hydrophobicity and insulation property, and the Ti3C2Tx side has hydrophilicity and terrific conductivity. When the mass fraction of Ti3C2Tx is 80 wt.%, the Janus Ti3C2Tx-(Fe3O4/PI) composite film has excellent EMI shielding performances and mechanical properties, with EMI shielding effectiveness, tensile strength and Young’s modulus reaching 66 dB, 114.5 MPa and 5.8 GPa, respectively. At the same time, electromagnetic waves show different absorption shielding effectiveness (SEA) when incident from two sides of the Janus films. When the electromagnetic waves are incident from the Fe3O4/PI side, the SEA of the Janus film is 58 dB, much higher than that when the electromagnetic waves are incident from the Ti3C2Tx side (39 dB). In addition, the Ti3C2Tx side of the Janus Ti3C2Tx-(Fe3O4/PI) composite films also has excellent electrothermal and photothermal conversion performances. When the applied voltage is 4 V, the stable surface temperature reaches 108 °C; when it is irradiated by simulated sunlight with power density of 200 mW/cm2, the stable surface temperature reaches 95 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, H. R.; Lu, Z. L.; Gao, Q. S.; Zuo, Y.; Liu, X. H.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 2021, 16, 331–340.

    CAS  Google Scholar 

  2. Cao, W. T.; Ma, C.; Tan, S.; Ma, M. G.; Wan, P. B.; Chen, F. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 2019, 11, 72.

    Article  CAS  Google Scholar 

  3. Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653.

    Article  CAS  Google Scholar 

  4. Cheng, H. R.; Pan, Y. M.; Chen, Q.; Che, R. C.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 2021, 4, 505–513.

    Article  CAS  Google Scholar 

  5. Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

    Article  CAS  Google Scholar 

  6. Duan, H. J.; Zhu, H. X.; Gao, J. F.; Yan, D. X.; Dai, K.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 2020, 8, 9146–9159.

    Article  CAS  Google Scholar 

  7. Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021, 4, 274–285.

    Article  CAS  Google Scholar 

  8. Fan, Z. M.; Wang, D. L.; Yuan, Y.; Wang, Y. S.; Cheng, Z. J.; Liu, Y. Y.; Xie, Z. M. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122696.

    Article  CAS  Google Scholar 

  9. Guo, J.; Li, X.; Chen, Z. R.; Zhu, J. F.; Mai, X. M.; Wei, R. B.; Sun, K.; Liu, H.; Chen, Y. X.; Naik, N. et al. Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 108, 64–72.

    Article  Google Scholar 

  10. Fan, Z. M.; He, H. Q.; Yu, J. X.; Liu, L.; Liu, Y. Y.; Xie, Z. M. Lightweight three-dimensional cellular MXene film for superior energy storage and electromagnetic interference shielding. ACS Appl. Energy Mater. 2020, 3, 8171–8178.

    Article  CAS  Google Scholar 

  11. Sang, G. L.; Xu, P.; Yan, T.; Murugadoss, V.; Naik, N.; Ding, Y. S.; Guo, Z. H. Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 153.

    Article  CAS  Google Scholar 

  12. Mei, J.; Ayoko, G. A.; Hu, C. F.; Sun, Z. Q. Thermal reduction of sulfur-containing MAX phase for MXene production. Chem. Eng. J. 2020, 395, 125111.

    Article  CAS  Google Scholar 

  13. Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

    Article  CAS  Google Scholar 

  14. Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    Article  CAS  Google Scholar 

  15. Hu, D. W.; Huang, X. Y.; Li, S. T.; Jiang, P. K. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 188, 107995.

    Article  CAS  Google Scholar 

  16. Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

    Article  CAS  Google Scholar 

  17. Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

    Article  CAS  Google Scholar 

  18. Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

    Article  CAS  Google Scholar 

  19. Wei, H. W.; Wang, M. Q.; Zheng, W. H.; Jiang, Z. X.; Huang, Y. D. 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 2020, 46, 6199–6204.

    Article  CAS  Google Scholar 

  20. Zhang, Y. L.; Wang, L.; Zhang, J. L.; Song, P.; Xiao, Z. R.; Liang, C. B.; Qiu, H.; Kong, J.; Gu, J. W. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 2019, 183, 107833.

    Article  CAS  Google Scholar 

  21. Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–300.

    Article  CAS  Google Scholar 

  22. Kumar, P. Ultrathin 2D nanomaterials for electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1901454.

    Article  Google Scholar 

  23. Li, Z. Y.; Wang, Z. Y.; Lu, W. X.; Hou, B. Theoretical study of electromagnetic interference shielding of 2D MXenes films. Metals 2018, 8, 652.

    Article  CAS  Google Scholar 

  24. Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

    Article  CAS  Google Scholar 

  25. Wan, Y. J.; Li, X. M.; Zhu, P. L.; Sun, R.; Wong, C. P.; Liao, W. H. Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A:Appl. Sci. Manuf. 2020, 130, 105764.

    Article  CAS  Google Scholar 

  26. Weng, G. M.; Li, J. Y.; Alhabeb, M.; Karpovich, C.; Wang, H.; Lipton, J.; Maleski, K.; Kong, J.; Shaulsky, E.; Elimelech, M. et al. Layer-by-layer assembly of cross-functional semi-transparent mxene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 2018, 28, 1803360.

    Article  CAS  Google Scholar 

  27. Chen, Y. M.; Zhang, L.; Mei, C. T.; Li, Y.; Duan, G. G.; Agarwal, S.; Greiner, A.; Ma, C. X.; Jiang, S. H. Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl. Mater. Interfaces 2020, 12, 35513–35522.

    Article  CAS  Google Scholar 

  28. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  CAS  Google Scholar 

  29. Chen, Q.; Ma, Z. W.; Wang, Z. Z.; Liu, L.; Zhu, M. H.; Lei, W. W.; Song, P. A. Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 2022, 32, 2110782.

    Article  CAS  Google Scholar 

  30. Wu, Z. Y.; Li, L.; Liao, T.; Chen, X. Q.; Jiang, W.; Luo, W.; Yang, J. P.; Sun, Z. Q. Janus nanoarchitectures: From structural design to catalytic applications. Nano Today 2018, 22, 62–82.

    Article  CAS  Google Scholar 

  31. Han, X. H.; Ding, S. Q.; Fan, L. W.; Zhou, Y. H.; Wang, S. R. Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 2021, 9, 18614–18622.

    Article  CAS  Google Scholar 

  32. Li, L. L.; Zhao, S.; Luo, X. J.; Zhang, H. B.; Yu, Z. Z. Smart MXene-Based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 2021, 175, 594–602.

    Article  CAS  Google Scholar 

  33. An, Y. P.; Yang, J.; Yang, H. C.; Wu, M. B.; Xu, Z. K. Janus membranes with charged carbon nanotube coatings for deemulsification and separation of oil-in-water emulsions. ACS Appl. Mater. Interfaces 2018, 10, 9832–9840.

    Article  CAS  Google Scholar 

  34. Ma, Q. L.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Liu, G. X. Flexible Janus nanoribbons array: A new strategy to achieve excellent electrically conductive anisotropy, magnetism, and photoluminescence. Adv. Funct. Mater. 2015, 25, 2436–2443.

    Article  CAS  Google Scholar 

  35. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  36. Lipton, J.; Röhr, J. A.; Dang, V.; Goad, A.; Maleski, K.; Lavini, F.; Han, M. K.; Tsai, E. H. R.; Weng, G. M.; Kong, J. et al. Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 2020, 3, 546–557.

    Article  Google Scholar 

  37. Liu, F.; Li, Y. C.; Hao, S.; Cheng, Y.; Zhan, Y. H.; Zhang, C. M.; Meng, Y. Y.; Xie, Q.; Xia, H. S. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohyd. Polym. 2020, 243, 116467.

    Article  CAS  Google Scholar 

  38. Liu, H. B.; Fu, R. L.; Su, X. Q.; Wu, B. Y.; Wang, H.; Xu, Y.; Liu, X. H. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos. Commun. 2021, 23, 100593.

    Article  Google Scholar 

  39. Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

    Article  CAS  Google Scholar 

  40. Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaflike MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

    Article  CAS  Google Scholar 

  41. Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.

    Article  CAS  Google Scholar 

  42. Wu, Z. Y.; Li, C. R.; Li, Z.; Feng, K.; Cai, M. J.; Zhang, D. K.; Wang, S. H.; Chu, M. Y.; Zhang, C. C.; Shen, J. H. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 2021, 15, 5696–5705.

    Article  CAS  Google Scholar 

  43. Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.

    Article  CAS  Google Scholar 

  44. Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

    Article  CAS  Google Scholar 

  45. Xu, J. L.; Zhang, X.; Miao, Y. X.; Wen, M. X.; Yan, W. J.; Lu, P.; Wang, Z. R.; Sun, Q. In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl. Surf. Sci. 2021, 546, 149163.

    Article  CAS  Google Scholar 

  46. Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

    Article  CAS  Google Scholar 

  47. Ling, J. Q.; Zhai, W. T.; Feng, W. W.; Shen, B.; Zhang, J. F.; Zheng, W. G. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684.

    Article  CAS  Google Scholar 

  48. Liu, R. T.; Miao, M.; Li, Y. H.; Zhang, J. F.; Cao, S. M.; Feng, X. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 44787–44795.

    Article  CAS  Google Scholar 

  49. Rajavel, K.; Yu, X. C.; Zhu, P. L.; Hu, Y. G.; Sun, R.; Wong, C. Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings. ACS Appl. Mater. Interfaces 2020, 12, 49737–49747.

    Article  CAS  Google Scholar 

  50. Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M. K.; Hong, S. M.; Han, M. K.; Gogotsi, Y.; Koo, C. M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054.

    Article  CAS  Google Scholar 

  51. Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A:Appl. Sci. Manuf. 2020, 128, 105670.

    Article  CAS  Google Scholar 

  52. Shen, B.; Zhai, W. T.; Tao, M. M.; Ling, J. Q.; Zheng, W. G. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391.

    Article  CAS  Google Scholar 

  53. Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

    Article  Google Scholar 

  54. Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

    Article  CAS  Google Scholar 

  55. Luo, J. Q.; Zhao, S.; Zhang, H. B.; Deng, Z. M.; Li, L. L.; Yu, Z. Z. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2019, 182, 107754.

    Article  CAS  Google Scholar 

  56. Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

    Article  CAS  Google Scholar 

  57. Liu, P. J.; Ng, V. M. H.; Yao, Z. J.; Zhou, J. T.; Kong, L. B. Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater. Lett. 2018, 229, 286–289.

    Article  CAS  Google Scholar 

  58. Liang, C. Y.; Hamidinejad, M.; Ma, L.; Wang, Z. J.; Park, C. B. Lightweight and flexible graphene/SiC-nanowires/poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon 2020, 156, 58–66.

    Article  CAS  Google Scholar 

  59. Wang, Q. W.; Zhang, H. B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L. X.; Yang, R.; Koratkar, N.; Yu, Z. Z. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 2019, 29, 1806819.

    Article  CAS  Google Scholar 

  60. Li, Z. W.; Lin, Z. J.; Han, M. S.; Mu, Y. B.; Yu, P. P.; Zhang, Y. L.; Yu, J. Flexible electrospun carbon nanofibers/silicone composite films for electromagnetic interference shielding, electrothermal and photothermal applications. Chem. Eng. J. 2021, 420, 129826.

    Article  CAS  Google Scholar 

  61. Zhou, Z. H.; Song, Q. C.; Huang, B. X.; Feng, S. Y.; Lu, C. H. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 2021, 15, 12405–12417.

    Article  CAS  Google Scholar 

  62. Ruan, K. P.; Guo, Y. Q.; Lu, C. Y.; Shi, X. T.; Ma, T. B.; Zhang, Y. L.; Kong, J.; Gu, J. W. Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 2021, 8438614.

    CAS  Google Scholar 

  63. Sobolčiak, P.; Ali, A.; Hassan, M. K.; Helal, M. I.; Tanvir, A.; Popelka, A.; Al-Maadeed, M. A.; Krupa, I.; Mahmoud, K. A. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS One 2017, 12, e0183705.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the supports from the National Natural Science Foundation of China (Nos. U21A2093 and 51903145), Fundamental Research Funds for the Central Universities (No. D5000210627). Y. L. Z. would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (No. CX2021107). This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Gu.

Electronic Supplementary Material

12274_2022_4358_MOESM1_ESM.pdf

Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, Z., Ruan, K. et al. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 15, 5601–5609 (2022). https://doi.org/10.1007/s12274-022-4358-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4358-7

Keywords

Navigation