Skip to main content
Log in

Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rapid improvement in the running speed, transmission efficiency, and power density of miniaturized devices means that multifunctional flexible composites with excellent thermal management capability and high electromagnetic interference (EMI) shielding performance are urgently required. Here, inspired by the fibrous pathways of the human nervous system, a “core-sheath” fibers structured strategy was proposed to prepare thermoplastic polyurethane/polydopamine/carbon nanotube (TPU/PDA/CNT) composites film with thermal management capability and EMI shielding performance. Firstly, TPU@PDA@CNT fibers with CNT shell were prepared by a facile polydopamine-assisted coating on electrospun TPU fibers. Subsequently, TPU/PDA/CNT composites with three-dimensional (3D) fibrous CNT “tracks” are obtained by a hot-pressing process, where CNTs distributed on adjacent fibers are compactly contacted. The fabricated TPU/PDA/CNT composites exhibit a high in-plane thermal conductivity (TC) of 9.6 W/(m·K) at low CNT loading of 7.6 wt.%. In addition, it also presents excellent mechanical properties and excellent EMI shielding effectiveness of 48.3 dB as well as multi-source driven thermal management capabilities. Hence, this study provides a simple yet scalable technique to prepare composites with advanced thermal management and EMI shielding performance to develop new-generation wireless communication technologies and portable intelligent electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X.; Wu, K.; Zhang, Y. Z.; Liu, D. Y.; Li, R. L.; Fu, Q. Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3D high thermal conductivity. Adv. Mater. 2022, 34, 2206088.

    CAS  Google Scholar 

  2. Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

    CAS  Google Scholar 

  3. Liao, S. Y.; Wang, X. Y.; Huang, H. P.; Shi, Y. Y.; Wang, Q. F.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P.; Wan, Y. J. Intelligent shielding material based on VO2 with tunable near-field and far-field electromagnetic response. Chem. Eng. J. 2023, 464, 142596.

    CAS  Google Scholar 

  4. Zhou, B.; Song, J. Z.; Wang, B.; Feng, Y. Z.; Liu, C. T.; Shen, C. Y. Robust double-layered ANF/MXene-PEDOT: PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 2022, 15, 9520–9530.

    CAS  Google Scholar 

  5. Wu, Z. Q.; Dong, J.; Li, X. T.; Zhao, X.; Ji, C. C.; Zhang, Q. H. Interlayer decoration of expanded graphite by polyimide resins for preparing highly thermally conductive composites with superior electromagnetic shielding performance. Carbon 2022, 198, 1–10.

    CAS  Google Scholar 

  6. Dong, A. W.; Mu, Z. J.; Meng, X. J.; Li, S.; Li, J. N.; Dai, L.; Lv, J. N.; Li, P. F.; Wang, B. Fine-tuning the electromagnetic parameters of 2D conjugated metal-organic framework semiconductors for anti-electromagnetic interference in the Ku band. Chem. Eng. J. 2022, 444, 136574.

    CAS  Google Scholar 

  7. Xie, Z. L.; Dou, Z. L.; Wu, D.; Zeng, X. T.; Feng, Y.; Tian, Y. F.; Fu, Q.; Wu, K. Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv. Funct. Mater. 2023, 33, 2214071.

    CAS  Google Scholar 

  8. Lei, C. X.; Xie, Z. L.; Wu, K.; Fu, Q. Controlled vertically aligned structures in polymer composites: Natural inspiration, structural processing, and functional application. Adv. Mater. 2021, 33, 2103495.

    CAS  Google Scholar 

  9. Yang, G.; Wang, M. J.; Dong, J. W.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Shen, C. Y. Fibers-induced segregated-like structure for polymer composites achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Compos. Part B: Eng. 2022, 246, 110253.

    CAS  Google Scholar 

  10. Dong, J. C.; Tang, X. W.; Peng Y. D.; Fan, C. H.; L, L.; Zhang, C.; Lai, F.L.; He, G. J.; Ma, P.M.; Wang, Z. C.; Wei, Q. F.; Yan, X. P.; Qian, H. L.; Huang, Y. P.; Liu, T. X. Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 2023, 108, 108194.

    CAS  Google Scholar 

  11. Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 2018, 14, 1800534.

    Google Scholar 

  12. Jia, J.; Peng, Y.; Zha, X. J.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Janus and heteromodulus elastomeric fiber mats feature regulable stress redistribution for boosted strain sensing performance. ACS Nano 2022, 16, 16806–16815.

    CAS  Google Scholar 

  13. Liu, J. H.; Li, W. D.; Jia, J.; Tang, C. Y.; Wang, S.; Yu, P.; Zhang, Z. M.; Ke, K.; Bao, R. Y.; Liu, Z. Y. et al. Structure-regenerated silk fibroin with boosted piezoelectricity for disposable and biodegradable oral healthcare device. Nano Energy 2022, 103, 107787.

    CAS  Google Scholar 

  14. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    CAS  Google Scholar 

  15. Chen, Q.; Ma, Z. W.; Wang, M. C.; Wang, Z. Z.; Feng, J. B.; Chevali, V.; Song, P. A. Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 2023, 16, 1362–1386.

    CAS  Google Scholar 

  16. Wang, H.; He, D. Y.; Qiu, J.; Ma, Y. Y.; Wang, J.; Li, Y. X.; Chen, J. Y.; Wang, C. PAN/W18O49/Ag nanofibrous membrane for high-efficient and multi-band electromagnetic-interference shielding with broad temperature tolerance and good thermal isolating capacity. Compos. Part B: Eng. 2022, 236, 109793.

    CAS  Google Scholar 

  17. Zha, X. J.; Yang, J.; Pu, J. H.; Feng, C. P.; Bai, L.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Enhanced thermal conductivity and balanced mechanical performance of PP/BN composites with 1 vol.% finely dispersed MWCNTs assisted by OBC. Adv. Mater. Interfaces 2019, 6, 1900081.

    Google Scholar 

  18. Zhuang, Q. N.; Ma, Z. J.; Gao, Y.; Zhang, Y. K.; Wang, S. C.; Lu, X.; Hu, H.; Cheung, C.; Huang, Q. Y.; Zheng, Z. J. Liquid-metal-superlyophilic and conductivity-strain-enhancing scaffold for permeable superelastic conductors. Adv. Funct. Mater. 2021, 31, 2105587.

    CAS  Google Scholar 

  19. Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

    CAS  Google Scholar 

  20. Yi, S. Q.; Sun, H.; Jin, Y. F.; Zou, K. K.; Li, J.; Jia, L. C.; Yan, D. X.; Li, Z. M. CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites. Compos. Part B: Eng. 2022, 239, 109961.

    Google Scholar 

  21. Wan, Y. J.; Wang, X. Y.; Li, X. M.; Liao, S. Y.; Lin, Z. Q.; Hu, Y. G.; Zhao, T.; Zeng, X. L.; Li, C. H.; Yu, S. H. et al. Ultrathin densified carbon nanotube film with “mttalllike” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 2020, 14, 14134–14145.

    CAS  Google Scholar 

  22. Yang, G.; Zhang, X. D.; Shang, Y.; Xu, P. H.; Pan, D.; Su, F. M.; Ji, Y. X.; Feng, Y. Z.; Liu, Y. Z.; Liu, C. T. Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos. Sci. Technol. 2022, 201, 108521.

    Google Scholar 

  23. Wan, Y. J.; Rajavel, K.; Li, X. M.; Wang, X. Y.; Liao, S. Y.; Lin, Z. Q.; Zhu, P. L.; Sun, R.; Wong, C. P. Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J. 2022, 408, 127303.

    Google Scholar 

  24. Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. E.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

    CAS  Google Scholar 

  25. Wei, Y.; Zhou, H. J.; Deng, H.; Ji, W. J.; Tian, K.; Ma, Z. Y.; Zhang, K. Y.; Fu, Q. “Toolbox” for the processing of functional polymer composites. Nano-Micro Lett. 2022, 14, 35.

    CAS  Google Scholar 

  26. Shen, Z. M.; Feng, J. C. Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustainable Chem. Eng. 2019, 7, 6259–6266.

    CAS  Google Scholar 

  27. Tan, X.; Liu, T. H.; Zhou, W. J.; Yuan, Q. L.; Ying, J. F.; Yan, Q. W.; Lv, L.; Chen, L.; Wang, X. Z.; Du, S. Y. et al. Enhanced electromagnetic shielding and thermal conductive properties of polyolefin composites with a Ti3C2Tx MXene/graphene framework connected by a hydrogen-bonded interface. ACS Nano 2022, 16, 9254–9266.

    CAS  Google Scholar 

  28. Yang, G.; Zhang, X. D.; Pan, D.; Zhang, W.; Shang, Y.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Shen, C. Y. Highly thermal conductive poly(vinyl alcohol) composites with oriented hybrid networks: Silver nanowire bridged boron nitride nanoplatelets. ACS Appl. Mater. Interfaces 2022, 13, 32286–32294.

    Google Scholar 

  29. Li, J. H.; Ma, Q. Q.; Gao, S.; Liang, T.; Pang, Y. S.; Zeng, X. L.; Li, Y. Y.; Zeng, X. L.; Sun, R.; Ren, L. L. Liquid bridge: Liquid metal bridging spherical BN largely enhances the thermal conductivity and mechanical properties of thermal interface materials. J. Mater. Chem. C 2022, 10, 6736–6743.

    CAS  Google Scholar 

  30. Wang, X. Y.; Liao, S. Y.; Huang, H. P.; Wang, Q. F.; Shi, Y. Y.; Zhu, P. L.; Hu, Y. G.; Sun, R.; Wan, Y. J. Enhancing the chemical stability of MXene through synergy of hydrogen bond and coordination bond in aqueous solution. Small Methods 2023, 7, 2201694.

    CAS  Google Scholar 

  31. Yang, W.; Bai, H. X.; Jiang, B.; Wang, C. N.; Ye, W. M.; Li, Z. X.; Xu, C.; Wang, X. B.; Li, Y. F. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 2022, 15, 9926–9935.

    CAS  Google Scholar 

  32. Wang, X. W.; Wu, P. Y. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS Appl. Mater. Interfaces 2018, 10, 34311–34321.

    CAS  Google Scholar 

  33. Hong, H.; Jung, Y. H.; Lee, J. S.; Jeong, C.; Kim, J. U.; Lee, S.; Ryu, H.; Kim, H.; Ma, Z. Q.; Kim, T. I. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1902575.

    Google Scholar 

  34. Su, Z.; Wang, H.; Ye, X. Z.; Tian, K. H.; Huang, W. Q.; He, J.; Guo, Y. L.; Tian, X. Y. Anisotropic thermally conductive flexible polymer composites filled with hexagonal born nitride (h-BN) platelets and ammine carbon nanotubes (CNT-NH2): Effects of the filler distribution and orientation. Compos. Part A:Appl. Sci. Manuf. 2018, 109, 402–412.

    CAS  Google Scholar 

  35. Luo, F. H.; Zhang, M.; Chen, S. L.; Xu, J. F.; Ma, C.; Chen, G. H. Sandwich-structured PVA/rGO films from self-construction with high thermal conductivity and electrical insulation. Compos. Sci. Technol. 2022, 207, 108707.

    Google Scholar 

  36. Liang, J. C.; Luo, J. W.; Zhang, J. X.; Xiong, Y. Q.; Tan, S. Z. Constructing a high-density thermally conductive network through electrospinning-hot-pressing of BN@PDA/GO/PVDF composites. ACS Appl. Polym. Mater. 2022, 4, 2414–2422.

    CAS  Google Scholar 

  37. Bai, L.; Zhang, Z. M.; Pu, J. H.; Feng, C. P.; Zhao, X.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Highly thermally conductive electrospun stereocomplex polylactide fibrous film dip-coated with silver nanowires. Polymer 2020, 194, 122390.

    CAS  Google Scholar 

  38. Ying, J. F.; Tan, X.; Lv, L.; Wang, X. Z.; Gao, J. Y.; Yan, Q. W.; Ma, H. B.; Nishimura, K.; Li, H.; Yu, J. H. et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 2021, 15, 12922–12934.

    CAS  Google Scholar 

  39. Liao, S. Y.; Li, G.; Wang, X. Y.; Wan, Y. J.; Zhu, P. L.; Hu, Y. G.; Zhao, T.; Sun, R.; Wong, C. P. Metallized skeleton of polymer foam based on metal-organic decomposition for high-performance EMI shielding. ACS Appl. Mater. Interfaces 2022, 14, 3302–3314.

    CAS  Google Scholar 

  40. Pan, J. K.; Xu, Y.; Bao, J. J. Epoxy composite foams with excellent electromagnetic interference shielding and heat-resistance performance. J. Appl. Polym. Sci. 2018, 135, 46013.

    Google Scholar 

  41. Yan, D. X.; Ren, P. G.; Pang, H.; Fu, Q.; Yang, M. B.; Li, Z. M. Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 2012, 22, 18772–18774.

    CAS  Google Scholar 

  42. Ling, J. Q.; Zhai, W. T.; Feng, W. W.; Shen, B.; Zhang, J. F.; Zheng, W. G. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684.

    CAS  Google Scholar 

  43. Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z. X.; Yu, Z. Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924.

    CAS  Google Scholar 

  44. Li, J. T.; Zhang, G. C.; Ma, Z. L.; Fan, X. L.; Fan, X.; Qin, J. B.; Shi, X. T. Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams. Compos. Sci. Technol. 2016, 129, 70–78.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21704096, 51703217, and 12072325) and the Natural Science Foundation of Henan Province (No. 20A430028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengmei Su or Chuntai Liu.

Electronic Supplementary Material

12274_2023_5884_MOESM1_ESM.pdf

Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Zhou, L., Wang, M. et al. Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Nano Res. 16, 11411–11421 (2023). https://doi.org/10.1007/s12274-023-5884-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5884-7

Keywords

Navigation