Skip to main content
Log in

Improving stability of MXenes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to their superior hydrophilicity and conductivity, ultra-high volumetric capacitance, and rich surface-chemistry properties, MXenes exhibit unique and excellent performance in catalysis, energy storage, electromagnetic shielding, and life sciences. Since they are derived from ceramics (MAX phase) through etching, one of the challenges in MXenes preparation is the inevitable exposure of metal atoms on their surface and embedding of anions and cations. Because the as-obtained MXenes are always in a thermodynamically metastable state, they tend to react with trace oxygen or oxygen-containing groups to form metal oxides or degrade, leading to sharply declined activity and impaired performance. Therefore, improving the stability of MXenes-based materials is of practical significance in relevant applications. Unfortunately, there lacks a comprehensive review in the literature on relevant topics. To help promote the wide applications of MXenes, we review from the following aspects: (i) insights into the factors affecting the stability of MXenes-based materials, including oxidation of MXenes flakes, stability of MXenes colloidal solutions, and swelling and degradation of MXenes thin-film, (ii) strategies for enhancing the stability of MXenes-based materials by optimizing MAX phase synthesis and modifying the MXenes preparation, and (iii) techniques for further increasing the stability of freshly prepared MXenes-based materials via controlling the storage conditions, and forming shielding on the surface and/or edge of MXenes flakes. Finally, some outlooks are proposed on the future developments and challenges of highly active and stable MXenes. We aim to provide guidance for the design, preparation, and applications of MXenes-based materials with excellent stability and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, J.; Palisaitis, J.; Halim, J.; Dahlqvist, M.; Tao, Q. Z.; Persson, I.; Hultman, L.; Persson, P. O. Å.; Rosen, J. Boridene: Two-dimensional Mo4/3B2−x with ordered metal vacancies obtained by chemical exfoliation. Science 2021, 373, 801–805.

    Article  CAS  Google Scholar 

  2. Li, B.; Wu, Y.; Li, N.; Chen, X. Z.; Zeng, X. B.; Arramel; Zhao, X. J.; Jiang, J. Z. Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 9261–9267.

    Article  CAS  Google Scholar 

  3. Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additivemediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

    Article  CAS  Google Scholar 

  4. Jiang, J. Z.; Wong, C. P. Y.; Zou, J.; Li, S. S.; Wang, Q. X.; Chen, J. Y.; Qi, D. Y.; Wang, H. Y.; Eda, G.; Chua, D. H. C. et al. Two-step fabrication of single-layer rectangular SnSe flakes. 2D Mater. 2017, 4, 021026.

    Article  Google Scholar 

  5. Li, N.; Yang, Y. F.; Shi, Z. H.; Lan, Z. G.; Arramel, A.; Zhang, P.; Ong, W. J.; Jiang, J. Z.; Lu, J. F. Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. iScience 2022, 25, 103753.

    Article  CAS  Google Scholar 

  6. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y.; et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  7. Zou, J.; Wu, S. L.; Liu, Y.; Sun, Y. J.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.; Jiang, J. Z. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.

    Article  CAS  Google Scholar 

  8. Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Liao, G. D.; Bai, S. S.; Zou, J.; Wu, P. X.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15–24.

    Article  Google Scholar 

  9. Zou, J.; Liao, G. D.; Jiang, J. Z.; Xiong, Z. G.; Bai, S. S.; Wang, H. T.; Wu, P. X.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025.

    CAS  Google Scholar 

  10. Jiang, J. Z.; Ouyang, L.; Zhu, L. H.; Zheng, A. M.; Zou, J.; Yi, X. F.; Tang, H. Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Cabon 2014, 80, 213–221.

    CAS  Google Scholar 

  11. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  CAS  Google Scholar 

  12. Ahmed, A.; Hossain, M. M.; Adak, B.; Mukhopadhyay, S. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem. Mater. 2020, 32, 10296–10320.

    Article  CAS  Google Scholar 

  13. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    Article  CAS  Google Scholar 

  14. Wang, X.; Wang, Y. M.; Jiang, Y. P.; Li, X. L.; Liu, Y.; Xiao, H. H.; Ma, Y.; Huang, Y. Y.; Yuan, G. H. Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries. Adv. Funct. Mater. 2021, 31, 2103210.

    Article  CAS  Google Scholar 

  15. Bai, S. S.; Yang, M. Q.; Jiang, J. Z.; He, X. M.; Zou, J.; Xiong, Z. G.; Liao, G. D.; Liu, S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl. 2021, 5, 78.

    Article  CAS  Google Scholar 

  16. Naguib, M.; Barsoum, M. W.; Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021, 33, 2103393.

    Article  CAS  Google Scholar 

  17. Shi, H. H.; Zhang, P. P.; Liu, Z. C.; Park, S.; Lohe, M. R.; Wu, Y. P.; Nia, A. S.; Yang, S.; Feng, X. L. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem., Int. Ed. 2021, 60, 8689–8693.

    Article  CAS  Google Scholar 

  18. Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core—shell nanostructure for high-efficiency electrocatalytic hydrogen evolution. Nano Res. in press, https://doi.org/10.1007/s12274-022-4276-8.

  19. VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

    Article  CAS  Google Scholar 

  20. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

    Article  CAS  Google Scholar 

  21. Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

    Article  CAS  Google Scholar 

  22. Maleski, K.; Mochalin, V. N.; Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 2017, 29, 1632–1640.

    Article  CAS  Google Scholar 

  23. Boota, M.; Chen, C.; Yang, L.; Kolesnikov, A. I.; Osti, N. C.; Porzio, W.; Barba, L.; Jiang, J. J. Probing molecular interactions at MXene-organic heterointerfaces. Chem. Mater. 2020, 32, 7884–7894.

    Article  CAS  Google Scholar 

  24. McDaniel, R. M.; Carey, M. S.; Wilson, O. R.; Barsoum, M. W.; Magenau, A. J. D. Well-dispersed nanocomposites using covalently modified, multilayer, 2D titanium carbide (MXene) and in-situ “click” polymerization. Chem. Mater. 2021, 33, 1648–1656.

    Article  CAS  Google Scholar 

  25. Wong, Z. M.; Tan, T. L.; Tieu, A. J. K.; Yang, S. W.; Xu, G. Q. Computational discovery of transparent conducting in-plane ordered MXene (i-MXene) alloys. Chem. Mater. 2019, 31, 4124–4132.

    Article  CAS  Google Scholar 

  26. Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

    Article  CAS  Google Scholar 

  27. Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel; Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.

    Article  CAS  Google Scholar 

  28. Habib, T.; Zhao, X. F.; Shah, S. A.; Chen, Y. X.; Sun, W. M.; An, H.; Lutkenhaus, J. L.; Radovic, M.; Green, M. J. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 2019, 3, 8.

    Article  Google Scholar 

  29. Hantanasirisakul, K.; Alhabeb, M.; Lipatov, A.; Maleski, K.; Anasori, B.; Salles, P.; Ieosakulrat, C.; Pakawatpanurut, P.; Sinitskii, A.; May, S. J. et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 2019, 31, 2941–2951.

    Article  CAS  Google Scholar 

  30. Guo, M.; Geng, W. C.; Liu, C. B.; Gu, J. Y.; Zhang, Z. Z.; Tang, Y. H. Ultrahigh areal capacitance of flexible MXene electrodes: Electrostatic and steric effects of terminations. Chem. Mater. 2020, 32, 8257–8265.

    Article  CAS  Google Scholar 

  31. Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

    Article  CAS  Google Scholar 

  32. Deysher, G.; Shuck, C. E.; Hantanasirisakul, K.; Frey, N. C.; Foucher, A. C.; Maleski, K.; Sarycheva, A.; Shenoy, V. B.; Stach, E. A.; Anasori, B. et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 2020, 14, 204–217.

    Article  CAS  Google Scholar 

  33. Yang, J.; Liu, R.; Jia, N.; Wu, K.; Fu, X.; Wang, Q.; Cui, W. Novel W-based in-plane chemically ordered (W2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er, Tm, and Lu) MAX phases and their 2D W1.33C MXene derivatives. Carbon 2021, 183, 76–83.

    Article  CAS  Google Scholar 

  34. Nemani, S. K.; Zhang, B. W.; Wyatt, B. C.; Hood, Z. D.; Manna, S.; Khaledialidusti, R.; Hong, W. C.; Sternberg, M. G.; Sankaranarayanan, S. K. R. S.; Anasori, B. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15, 12815–12825.

    Article  CAS  Google Scholar 

  35. Tu, T. T.; Liang, B.; Zhang, S. S.; Li, T. Y.; Zhang, B.; Xu, S. Y.; Mao, X. Y.; Cai, Y.; Fang, L.; Ye, X. S. Controllable patterning of porous MXene (Ti3C2) by metal-assisted electro-gelation method. Adv. Funct. Mater. 2021, 31, 2101374.

    Article  CAS  Google Scholar 

  36. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

    Article  CAS  Google Scholar 

  37. Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.

    Article  CAS  Google Scholar 

  38. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  39. Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 127, 3979–3983.

    Article  Google Scholar 

  40. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  41. Shi, M. J.; Xiao, P.; Lang, J. W.; Yan, C.; Yan, X. B. Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv. Sci. 2020, 7, 1901975.

    Article  CAS  Google Scholar 

  42. Cao, M. J.; Wang, F.; Wang, L.; Wu, W. L.; Lv, W. J.; Zhu, J. F. Room temperature oxidation of Ti3C2 MXene for supercapacitor electrodes. J. Electrochem. Soc. 2017, 164, A3933–A3942.

    Article  CAS  Google Scholar 

  43. Le, T. A.; Tran, N. Q.; Hong, Y.; Lee, H. Intertwined titanium carbide MXene within a 3D tangled Polypyrrole nanowires matrix for enhanced supercapacitor performances. Chem. Eur. J. 2019, 25, 1037–1043.

    CAS  Google Scholar 

  44. Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N. Effect of Postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 2015, 27, 5314–5323.

    Article  CAS  Google Scholar 

  45. Zhang, X. F.; Liu, X. D.; Yan, R. Z.; Yang, J. Q.; Liu, Y.; Dong, S. L. Ion-assisted self-assembly of Macroporous MXene films as supercapacitor electrodes. J. Mater. Chem. C 2020, 8, 2008–2013.

    Article  CAS  Google Scholar 

  46. Bayram, V.; Ghidiu, M.; Byun, J. J.; Rawson, S. D.; Yang, P.; McDonald, S. A.; Lindley, M.; Fairclough, S.; Haigh, S. J.; Withers, P. J. et al. MXene tunable lamellae architectures for supercapacitor electrodes. ACS Appl. Energy Mater. 2020, 3, 411–422.

    Article  CAS  Google Scholar 

  47. Liang, K.; Matsumoto, R. A.; Zhao, W.; Osti, N. C.; Popov, I.; Thapaliya, B. P.; Fleischmann, S.; Misra, S.; Prenger, K.; Tyagi, M. et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater. 2021, 31, 2104007.

    Article  CAS  Google Scholar 

  48. Gao, M.; Xie, Y.; Yang, W. L.; Lu, L. M. Fabrication of novel electrochemical sensor based on MXene/MWCNTs composite for sensitive detection of synephrine. Int. J. Electrochem. Sci. 2020, 15, 4619–4630.

    Article  CAS  Google Scholar 

  49. Kalambate, P. K.; Gadhari, N. S.; Li, X.; Rao, Z. X.; Navale, S. T.; Shen, Y.; Patil, V. R.; Huang, Y. H. Recent advances in MXene-based electrochemical sensors and biosensors. TrAC Trends Anal. Chem. 2019, 120, 115643.

    Article  CAS  Google Scholar 

  50. Shankar, S. S.; Shereema, R. M.; Rakhi, R. B. Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes. ACS Appl. Mater. Interfaces 2018, 10, 43343–43351.

    Article  CAS  Google Scholar 

  51. Rasheed, P. A.; Pandey, R. P.; Jabbar, K. A.; Ponraj, J.; Mahmoud, K. A. Sensitive electrochemical detection of L-cysteine based on a highly stable Pd@Ti3C2Tx (MXene) nanocomposite modified glassy carbon electrode. Anal. Methods 2019, 11, 3851–3856.

    Article  Google Scholar 

  52. Zhang, Y. P.; Wang, L. L.; Zhao, L. J.; Wang, K.; Zheng, Y. Q.; Yuan, Z. Y.; Wang, D. Y.; Fu, X. Y.; Shen, G. Z.; Han, W. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv. Mater. 2021, 33, 2007890.

    Article  CAS  Google Scholar 

  53. Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.

    Article  CAS  Google Scholar 

  54. Ho, D. H.; Choi, Y. Y.; Jo, S. B.; Myoung, J. M.; Cho, J. H. Sensing with MXenes: Progress and prospects. Adv. Mater. 2021, 33, 2005846.

    Article  CAS  Google Scholar 

  55. Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P. B. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021, 15, 9746–9758.

    Article  CAS  Google Scholar 

  56. Raagulan, K.; Braveenth, R.; Kim, B. M.; Lim, K. J.; Lee, S. B.; Kim, M.; Chai, K. Y. An effective utilization of MXene and its effect on electromagnetic interference shielding: Flexible, freestanding and thermally conductive composite from MXene-PAT-poly(P-aminophenol)-polyaniline co-polymer. RSC Adv. 2020, 10, 1613–1633.

    Article  CAS  Google Scholar 

  57. Fan, Z. M.; Wang, D. L.; Yuan, Y.; Wang, Y. S.; Cheng, Z. J.; Liu, Y. Y.; Xie, Z. M. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122696.

    Article  CAS  Google Scholar 

  58. Li, G. J.; Amer, N.; Hafez, H. A.; Huang, S. H.; Turchinovich, D.; Mochalin, V. N.; Hegmann, F. A.; Titova, L. V. Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses. Nano Lett. 2020, 20, 636–643.

    Article  CAS  Google Scholar 

  59. Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

    Article  CAS  Google Scholar 

  60. Han, K. H.; Zhang, X. M.; Deng, P.; Jiao, Q. J.; Chu, E. Y. Study of the thermal catalysis decomposition of ammonium perchlorate-based molecular perovskite with titanium carbide MXene. Vacuum 2020, 180, 109572.

    Article  CAS  Google Scholar 

  61. Hu, L. Y.; Li, M. Y.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Wen, J.; Gu, W. L.; Zhu, C. Z. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2T MXene for enhancing water oxidation catalysis. Chem. Eng. J. 2020, 398, 125605.

    Article  CAS  Google Scholar 

  62. Wang, J. Y.; He, P. L.; Shen, Y. L.; Dai, L. X.; Li, Z.; Wu, Y.; An, C. H. FeNi Nanoparticles on Mo2TiC2Tx MXene@Nickel foam as robust electrocatalysts for overall water splitting. Nano Res. 2021, 14, 3474–3481.

    Article  CAS  Google Scholar 

  63. Wang, L. K.; Han, M. K.; Shuck, C. E.; Wang, X. H.; Gogotsi, Y. Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 2021, 88, 106308.

    Article  CAS  Google Scholar 

  64. Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3D electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

    Article  Google Scholar 

  65. Ali, A.; Belaidi, A.; Ali, S.; Helal, M. I.; Mahmoud, K. A. Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. J. Mater. Sci. Mater. Electron. 2016, 27, 5440–5445.

    Article  CAS  Google Scholar 

  66. Soleymaniha, M.; Shahbazi, M. A.; Rafieerad, A. R.; Maleki, A.; Amiri, A. Promoting role of MXene nanosheets in biomedical sciences: Therapeutic and biosensing innovations. Adv. Healthc. Mater. 2019, 8, 1801137.

    Article  Google Scholar 

  67. Li, J.; Li, X. Van Der Bruggen, B. An MXene-based membrane for molecular separation. Environ. Sci. Nano 2020, 7, 1289–1304.

    Article  CAS  Google Scholar 

  68. Yi, J.; Du, L.; Li, J.; Yang, L. L.; Hu, L. Y.; Huang, S. H.; Dong, Y. C.; Miao, L. L.; Wen, S. C.; Mochalin, V. N. et al. Unleashing the potential of Ti2CTx MXene as a pulse modulator for mid-infrared fiber lasers. 2D Mater. 2019, 6, 045038.

    Article  Google Scholar 

  69. Li, Y. X.; Huang, S. H.; Wei, C. J.; Wu, C. L.; Mochalin, V. N. Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon. Nat. Commun. 2019, 10, 3014.

    Article  Google Scholar 

  70. Mashtalir, O.; Cook, K. M.; Mochalin, V. N.; Crowe, M.; Barsoum, M. W.; Gogotsi, Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2014, 2, 14334–14338.

    Article  CAS  Google Scholar 

  71. Zhang, C. J.; Pinilla, S.; McEvoy, N.; Cullen, C. P.; Anasori, B.; Long, E.; Park, S. H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856.

    Article  CAS  Google Scholar 

  72. Lotfi, R.; Naguib, M.; Yilmaz, D. E.; Nanda, J.; Van Duin, A. C. T. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem. A 2018, 6, 12733–12743.

    Article  CAS  Google Scholar 

  73. Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255.

    Article  Google Scholar 

  74. Wu, X. H.; Wang, Z. Y.; Yu, M. Z.; Xiu, L. Y.; Qiu, J. S. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 2017, 29, 1607017.

    Article  Google Scholar 

  75. Huang, S. H.; Mochalin, V. N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 2019, 58, 1958–1966.

    Article  CAS  Google Scholar 

  76. Chae, Y.; Kim, S. J.; Cho, S. Y.; Choi, J.; Maleski, K.; Lee, B. J.; Jung, H. T.; Gogotsi, Y.; Lee, Y.; Ahn, C. W. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale 2019, 11, 8387–8393.

    Article  CAS  Google Scholar 

  77. Huang, S. H.; Mochalin, V. N. Understanding chemistry of two-dimensional transition metal carbides and carbonitrides (MXenes) with gas analysis. ACS Nano 2020, 14, 10251–10257.

    Article  CAS  Google Scholar 

  78. Jiang, J. Z.; Zou, Y. L.; Arramel; Li, F. Y.; Wang, J. M.; Zou, J.; Li, N. Intercalation engineering of MXenes towards highly efficient photo (electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 2021, 9, 24195–24214.

    Article  CAS  Google Scholar 

  79. Ren, C. E.; Hatzell, K. B.; Alhabeb, M.; Ling, Z.; Mahmoud, K. A.; Gogotsi, Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 2015, 6, 4026–4031.

    Article  CAS  Google Scholar 

  80. Pandey, R. P.; Rasool, K.; Vinod, E. M.; Aïssa, B.; Gogotsi, Y.; Mahmoud, K. A. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 2018, 6, 3522–3533.

    Article  CAS  Google Scholar 

  81. Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

    Article  CAS  Google Scholar 

  82. Berdiyorov, G. R.; Mahmoud, K. A. Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T = F, O, and OH) MXene. Appl. Surf. Sci. 2017, 416, 725–730.

    Article  CAS  Google Scholar 

  83. VahidMohammadi, A.; Mojtabavi, M.; Caffrey, N. M.; Wanunu, M.; Beidaghi, M. Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Adv. Mater. 2019, 31, 1806931.

    Article  Google Scholar 

  84. Mathis, T. S.; Maleski, K.; Goad, A.; Sarycheva, A.; Anayee, M.; Foucher, A. C.; Hantanasirisakul, K.; Shuck, C. E.; Stach, E. A.; Gogotsi, Y. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 2021, 15, 6420–6429.

    Article  CAS  Google Scholar 

  85. Shuck, C. E.; Han, M. K.; Maleski, K.; Hantanasirisakul, K.; Kim, S. J.; Choi, J.; Reil, W. E. B.; Gogotsi, Y. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2019, 2, 3368–3376.

    Article  CAS  Google Scholar 

  86. Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

    Article  CAS  Google Scholar 

  87. Lim, J.; Jin, X. Y.; Jo, Y. K.; Lee, S.; Hwang, S. J. Kinetically controlled layer-by-layer stacking of metal oxide 2D nanosheets. Angew. Chem., Int. Ed. 2017, 56, 7093–7096.

    Article  CAS  Google Scholar 

  88. Lu, K.; Hu, Z. Y.; Xiang, Z. H.; Ma, J. Z.; Song, B.; Zhang, J. T.; Ma, H. Y. Cation intercalation in manganese oxide nanosheets: Effects on lithium and sodium storage. Angew. Chem., Int. Ed. 2016, 55, 10448–10452.

    Article  CAS  Google Scholar 

  89. Cheng, Q.; Yang, T.; Li, Y.; Li, M.; Chan, C. K. Oxidation-reduction assisted exfoliation of LiCoO2 into nanosheets and reassembly into functional Li-ion battery cathodes. J. Mater. Chem. A 2016, 4, 6902–6910.

    Article  CAS  Google Scholar 

  90. Yun, T.; Lee, G. S.; Choi, J.; Kim, H.; Yang, G. G.; Lee, H. J.; Kim, J. G.; Lee, H. M.; Koo, C. M.; Lim, J. et al. Multidimensional Ti3C2Tx MXene architectures via interfacial electrochemical self-assembly. ACS Nano 2021, 15, 10058–10066.

    Article  CAS  Google Scholar 

  91. Zhang, H. B.; Li, Z. Y.; Hou, Z. Y.; Mei, H.; Feng, Y.; Xu, B.; Sun, D. F. Self-assembly of MOF on MXene Nanosheets and in-situ conversion into superior nickel phosphates/MXene battery-type electrode. Chem. Eng. J. 2021, 425, 130602.

    Article  CAS  Google Scholar 

  92. Zhao, D.; Clites, M.; Ying, G.; Kota, S.; Wang, J.; Natu, V.; Wang, X.; Pomerantseva, E.; Cao, M.; Barsoum, M. W. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chem. Commun. 2018, 54, 4533–4536.

    Article  CAS  Google Scholar 

  93. Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.

    Article  CAS  Google Scholar 

  94. Lang, Z. Q.; Zhuang, Z. C.; Li, S. K.; Xia, L. X.; Zhao, Y.; Zhao, Y. L.; Han, C. H.; Zhou, L. MXene Surface terminations enable strong metal-support interactions for efficient methanol oxidation on palladium. ACS Appl. Mater. Interfaces 2020, 12, 2400–2406.

    Article  CAS  Google Scholar 

  95. Gao, G. P.; O’Mullane, A. P.; Du, A. J. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 2017, 7, 494–500.

    Article  CAS  Google Scholar 

  96. Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

    Article  CAS  Google Scholar 

  97. Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Wang, J. L. Searching for highly active catalysts for hydrogen evolution reaction based on Oterminated MXenes through a simple descriptor. Chem. Mater. 2016, 28, 9026–9032.

    Article  CAS  Google Scholar 

  98. Jiang, Y. N.; Sun, T.; Xie, X.; Jiang, W.; Li, J.; Tian, B. B.; Su, C. L. Oxygen functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 2019, 12, 1368–1373.

    Article  CAS  Google Scholar 

  99. Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X. Q.; Nam, K. W.; Yang X. Q.; Kolesnikov, A. L.; Kent, P. R. C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394.

    Article  CAS  Google Scholar 

  100. Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

    Article  CAS  Google Scholar 

  101. Zhang, J. Z.; Kong, N.; Hegh, D.; Usman, K. A. S.; Guan, G. W.; Qin, S.; Jurewicz, I.; Yang, W. R.; Razal, J. M. Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Appl. Mater. Interfaces 2020, 12, 34032–34040.

    Article  CAS  Google Scholar 

  102. Zhao, X.; Vashisth, A.; Prehn, E.; Sun, W.; Shah, S. A.; Habib, T.; Chen, Y.; Tan, Z.; Lutkenhaus, J. L.; Radovic, M. et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 2019, 1, 513–526.

    Article  Google Scholar 

  103. Wu, C. W.; Unnikrishnan, B.; Chen, I. W. P.; Harroun, S. G.; Chang, H. T.; Huang, C. C. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 2020, 25, 563–571.

    Article  Google Scholar 

  104. Natu, V.; Hart, J. L.; Sokol, M.; Chiang, H.; Taheri, M. L.; Barsoum, M. W. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem., Int. Ed. 2019, 58, 12655–12660.

    Article  CAS  Google Scholar 

  105. Ji, J. J.; Zhao, L. F.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Covalent stabilization and functionalization of MXene via Silylation reactions with improved surface properties. FlatChem 2019, 17, 100128.

    Article  CAS  Google Scholar 

  106. Gao, L. F.; Li, C.; Huang, W. C.; Mei, S.; Lin, H.; Ou, Q.; Zhang, Y.; Guo, J.; Zhang, F.; Xu, S. X. et al. MXene/polymer membranes: Synthesis, properties, and emerging applications. Chem. Mater. 2020, 32, 1703–1747.

    Article  CAS  Google Scholar 

  107. Savchak, M.; Borodinov, N.; Burtovyy, R.; Anayee, M.; Hu, K. S.; Ma, R. L.; Grant, A.; Li, H. M.; Cutshall, D. B.; Wen, Y. M. et al. Highly conductive and transparent reduced graphene oxide nanoscale films via thermal conversion of polymer-encapsulated graphene oxide sheets. ACS Appl. Mater. Interfaces 2018, 10, 3975–3985.

    Article  CAS  Google Scholar 

  108. Xiong, R.; Kim, H. S.; Zhang, L. J.; Korolovych, V. F.; Zhang, S. D.; Yingling, Y. G.; Tsukruk, V. V. Wrapping nanocellulose nets around graphene oxide sheets. Angew. Chem., Int. Ed. 2018, 57, 8508–8513.

    Article  CAS  Google Scholar 

  109. Ling, S. J.; Li, C. X.; Adamcik, J.; Wang, S. H.; Shao, Z. Z.; Chen, X.; Mezzenga, R. Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites. ACS Macro Lett. 2014, 3, 146–152.

    Article  CAS  Google Scholar 

  110. Krecker, M. C.; Bukharina, D.; Hatter, C. B.; Gogotsi, Y.; Tsukruk, V. V. Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 2020, 30, 2004554.

    Article  CAS  Google Scholar 

  111. Zhang, P.; Soomro, R. A.; Guan, Z. R. X.; Sun, N.; Xu, B. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 2020, 29, 163–171.

    Article  Google Scholar 

  112. Wu, T.; Pang, X.; Zhao, S. W.; Xu, S. M.; Liu, Z. Q.; Li, Y. S.; Huang, F. O. One-step construction of ordered sulfur-terminated tantalum carbide MXene for efficient overall water splitting. Small Struct. 2022, 3, 2100206.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 62004143 and 62174085), the Central Government Guided Local Science and Technology Development Special Fund Project (No. 2020ZYYD033), the China Postdoctoral Science Foundation (No. 2019M660607), the Opening Fund of Key Laboratory of Rare Mineral, Ministry of Natural Resources (No. KLRM—KF 202005), and the open research fund of State Key Laboratory of Organic Electronics and Information Displays.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zechao Zhuang, Qi Kang or Yizhou Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Bai, S., Zou, J. et al. Improving stability of MXenes. Nano Res. 15, 6551–6567 (2022). https://doi.org/10.1007/s12274-022-4312-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4312-8

Keywords

Navigation