Skip to main content

Advertisement

Log in

Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work conducting thin films have been fabricated from two-dimensional Ti3C2Tx (MXene) using cheap and vacuum free solution processible electrohydrodynamic atomization technique, for the first time. Delaminated Ti3C2Tx dispersed in ethanol has been processed and optimized deposition parameters have been achieved to deposit Ti3C2Tx thin film, directly. Three films of Ti3C2Tx with different thickness (135, 248 and 337 nm) based on deposition time i.e. 20 min (S1), 40 min (S2) and 60 min (S3) were fabricated on glass substrate, respectively. After which, films were annealed at 400 °C for 2 h in an inert environment. Films were fully characterized using scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction, UV–Vis-NIR, X-Ray Diffraction and the Zahner XPOT. Resistivity of S1, S2 and S3 were calculated to be 3.4 × 10−4 Ω-cm, 130 × 10−4 Ω-cm and 210 × 10−4 Ω-cm respectively ~86.7 % transmittance has obtained for S1 at 550 nm. For investigating electrode performance for Ti3C2Tx, films are applied as top electrode in diode (FTO/TiO2/Ti3C2Tx). It has been observed that S1 has shown the best diode behavior with 120 mA at 3 V. Therefore, we claim that two dimensional Ti3C2Tx MXene thin films have great potential to be further investigated for utilizing in photo-electronics, energy storage devices and sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.F. Wager, Science 300, 1245–1246 (2003)

    Article  Google Scholar 

  2. W.H. Lee, J. Park, S.H. Sim, S.B. Jo, K.S. Kim, B.H. Hong, K. Cho, Adv.Mater. 23, 1752–1756 (2011)

    Article  Google Scholar 

  3. Y. Ji, S. Lee, B. Cho, S. Song, T. Lee, ACS Nano 5, 5995–6000 (2011)

    Article  Google Scholar 

  4. Q. Tang, Z. Zhou, Prog. Mater Sci. 58, 1244–1315 (2013)

    Article  Google Scholar 

  5. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340, 1226419–1226437 (2013)

    Article  Google Scholar 

  6. X. Zhang, Yi Xie, Chem. Soc. Rev. 42, 8187–8199 (2013)

    Article  Google Scholar 

  7. M. Naguib, O. Mashtalir, J. Carle, V. Presser, L. Jun, L. Hultman, Y. Gogotsi, M.W. Barsoum, ACS Nano 6, 1322–1331 (2012)

    Article  Google Scholar 

  8. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    Article  Google Scholar 

  9. Z.F. Wang, Q.W. Shi, L.I. Qunxiang, J.G. Xiaoping Wang, J.G. Hou, H. Zheng, Appl. Phys. Lett. 91, 053109 (2007)

    Article  Google Scholar 

  10. M. Naguib, V. Mochalin, M. Barsoum, Y. Gogotsi, Adv. Mater. 26, 992–1005 (2014)

    Article  Google Scholar 

  11. M.W. Barsoum, Prog. Solid State Chem. 28, 201–281 (2000)

    Article  Google Scholar 

  12. J. Halim, M.R. Lukatskaya, K.M. Cook, Lu Jun, C.R. Smith, L.-Å. Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Chem. Mater. 26, 2374–2381 (2014)

    Article  Google Scholar 

  13. K.B. Hatzell, C.E. Ren, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, J. Phys. Chem. Lett. 6, 4026–4031 (2015)

    Article  Google Scholar 

  14. X.Z.-C. Lei, Z. Zhou, Front Phys. 10, 276–286 (2015)

    Article  Google Scholar 

  15. A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, J. Guillemette, H.S. Skulason, T. Szkopek, M. Siaj, Carbon 49, 4204–4210 (2011)

    Article  Google Scholar 

  16. C. Ogata, M. Koinuma, K. Hatakeyama, H. Tateishi, M.Z. Asrori, T. Taniguchi, A. Funatsu, Y. Matsumoto, Sci. Rep. 4, 3647 (2014)

    Article  Google Scholar 

  17. B.T. Lee, W.D. Kim, K.H. Lee, H.J. Lim, C.S. Kang, H. Hideki, S.H. Joo, H.B. Park, C.Y. Yoo, S.I. Lee, M.Y. Lee, J. Electron. Mater. 28, L9–L12 (1999)

    Article  Google Scholar 

  18. S. Zhang, Y. Li, N. Pan, J. Power Sources 206, 476–482 (2012)

    Article  Google Scholar 

  19. J. Ge, H.-B. Yao, Hu Wei, Yu. Xiao-Fang, Y.-X. Yan, L.-B. Mao, H.-H. Li, S.-S. Li, Yu. Shu-Hong, Nano Energy 2, 505–513 (2013)

    Article  Google Scholar 

  20. A. Ali, J. Jo, Y. Yang, K. Choi, Appl. Phys. A 114, 323–330 (2014)

    Article  Google Scholar 

  21. A. Ali, K. Ali, H.W. Dang, K.A. Mahmoud, K.H. Choi, J. Mater. Sci.: Mater. Electron. 26, 2039–2044 (2015)

    Google Scholar 

  22. K.H. Choi, A. Ali, J. Jo, J. Mater. Sci.: Mater. Electron. 24, 4893–4900 (2013)

    Google Scholar 

  23. N.M. Muhammad, N. Duraisamy, H.W. Dang, Je Jo, K.H. Choi, Thin Solid Films 520, 6398–6403 (2012)

    Article  Google Scholar 

  24. N. Duraisamy, N.M. Muhammad, A. Ali, J. Jo, Choi KH, Mater. Lett. 83, 80–83 (2012)

    Article  Google Scholar 

  25. Hu Tao, J. Wang, H. Zhang, Z. Li, Hu Minmin, X. Wang, Phys. Chem. Chem. Phys. 17, 9997–10003 (2015)

    Article  Google Scholar 

  26. O. Mashtalir, M. Naguib, V.N. Mochalin, Nat. Commun. 4, 1716 (2013)

    Article  Google Scholar 

  27. V. Kumar, R.G. Singh, L.P. Purohit, R.M. Mehra, J. Mater. Sci. Technol. 27, 481–488 (2011)

    Article  Google Scholar 

  28. M.S. Farhan, E. Zalnezhad, A.R. Bushroa, A.A.D. Sarhan, Int. J. Precis. Eng. Manuf. 14, 1465–1469 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to E. Ren and Prof Y. Gogotsi of Drexel University for donating MXene. FESEM analysis was performed at the Central Lab Unit, Qatar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Belaidi, A., Ali, S. et al. Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. J Mater Sci: Mater Electron 27, 5440–5445 (2016). https://doi.org/10.1007/s10854-016-4447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4447-z

Keywords

Navigation