Skip to main content
Log in

Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C-C cross-coupling of primary and secondary alcohols

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomic engineering of single atom catalysts (SACs) with high-density available active sites and optimized electronic properties can substantially boost catalytic efficacy. Herein, we report a solid-state transformation strategy to access Co SACs by introducing Co species from commercial Co2O3 powders into nitrogen-doped carbon support. The catalyst exhibited excellent catalytic activity, with a turnover frequency (TOF) of 2,307 h−1 and yield of 95%, in the direct C-C cross-coupling of benzyl alcohol and 1-phenylethanol (1 atm O2@80 °C) to yield chalcone. Density functional theory (DFT) calculations demonstrate the coordination environment and electronic metal-support interaction impact the catalytic pathway. In particular, a wide substrate scope and a broad functional-group tolerance of this SAC were validated, and the employment of this strategy for large-scale synthesis was also shown to be feasible. This work might shed light on the facile and scalable synthesis of highly active, selective, and stable SACs for heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lo, J. C.; Gui, J. H.; Yabe, Y.; Pan, C. M.; Baran, P. S. Functionalized olefin cross-coupling to construct carbon-carbon bonds. Nature 2014, 516, 343–348.

    Article  CAS  Google Scholar 

  2. Xia, Y.; Lu, G.; Liu, P.; Dong, G. B. Catalytic activation of carbon-carbon bonds in cyclopentanones. Nature 2016, 539, 546–550.

    Article  CAS  Google Scholar 

  3. Zhuang, C. L.; Zhang, W.; Sheng, C. Q.; Zhang, W. N.; Xing, C. G.; Miao, Z. Y. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762–7810.

    Article  CAS  Google Scholar 

  4. Shimizu, K.; Sato, R.; Satsuma, A. Direct C-C cross-coupling of secondary and primary alcohols catalyzed by a γ-alumina-supported silver subnanocluster. Angew. Chem., Int. Ed. 2009, 48, 3982–3986.

    Article  CAS  Google Scholar 

  5. Liu, X.; Ding, R. S.; He, L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. C-C cross-coupling of primary and secondary benzylic alcohols using supported gold-based bimetallic catalysts. ChemSusChem 2013, 6, 604–608.

    Article  CAS  Google Scholar 

  6. Biswas, S.; Mullick, K.; Chen, S. Y.; Gudz, A.; Carr, D. M.; Mendoza, C.; Angeles-Boza, A. M.; Suib, S. L. Facile access to versatile functional groups from alcohol by single multifunctional reusable catalyst. Appl. Catal. B: Environ. 2017, 203, 607–614.

    Article  CAS  Google Scholar 

  7. Rej, S.; Ano, Y.; Chatani, N. Bidentate directing groups: An efficient tool in C-H bond functionalization chemistry for the expedient construction of C-C bonds. Chem. Rev. 2020, 120, 1788–1887.

    Article  CAS  Google Scholar 

  8. Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H. J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 2013, 46, 1673–1681.

    Article  CAS  Google Scholar 

  9. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

    Article  CAS  Google Scholar 

  10. Zheng, Y. N.; Zhang, R.; Zhang, L.; Gu, Q. E.; Qiao, Z. A. A resol-assisted cationic coordinative co-assembly approach to mesoporous ABO3 perovskite oxides with rich oxygen vacancy for enhanced hydrogenation of furfural to furfuryl alcohol. Angew. Chem., Int. Ed. 2021, 60, 4774–4781.

    Article  CAS  Google Scholar 

  11. Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

    Article  CAS  Google Scholar 

  12. Feng, D. Y.; Dong, Y. B.; Zhang, L. L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. A. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem., Int. Ed. 2020, 59, 19503–19509.

    Article  CAS  Google Scholar 

  13. Gao, T. N.; Wang, T.; Wu, W.; Liu, Y. L.; Huo, Q. S.; Qiao, Z. A.; Dai, S. Solvent-induced self-assembly strategy to synthesize well-defined hierarchically porous polymers. Adv. Mater. 2019, 31, 1806254.

    Article  Google Scholar 

  14. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  CAS  Google Scholar 

  15. Morgan, K.; Goguet, A.; Hardacre, C. Metal redispersion strategies for recycling of supported metal catalysts: A perspective. ACS Catal. 2015, 5, 3430–3445.

    Article  CAS  Google Scholar 

  16. Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. E. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.

    Article  CAS  Google Scholar 

  17. Peng, B.; Liu, H. T.; Liu, Z. Y.; Duan, X. F.; Huang, Y. Toward rational design of single-atom catalysts. J. Phys. Chem. Lett. 2021, 12, 2837–2847.

    Article  CAS  Google Scholar 

  18. Liu, D. Q.; Barbar, A.; Najam, T.; Javed, M. S.; Shen, J.; Tsiakaras, P.; Cai, X. K. Single noble metal atoms doped 2D materials for catalysis. Appl. Catal. B: Environ. 2021, 297, 120389.

    Article  CAS  Google Scholar 

  19. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. in press, https://doi.org/10.1002/anie.202114450.

  20. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  21. Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    Article  CAS  Google Scholar 

  22. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. in press, https://doi.org/10.1016/j.apmate.2021.10.004.

  23. Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

    Article  Google Scholar 

  24. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. in press, https://doi.org/10.1007/s12274-021-3794-0.

  25. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    Article  CAS  Google Scholar 

  26. He, J.; Li, N.; Li, Z. G.; Zhong, M.; Fu, Z. X.; Liu, M.; Yin, J. C.; Shen, Z. R.; Li, W.; Zhang, J. J. et al. Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of singleatom catalysts. Adv. Funct. Mater. 2021, 31, 2103597.

    Article  CAS  Google Scholar 

  27. Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

    Article  CAS  Google Scholar 

  28. Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

    Article  CAS  Google Scholar 

  29. Li, Z. J.; Lu, X. W.; Sun, W. W.; Leng, L. P.; Zhang, M. Y.; Li, H. H.; Bai, L.; Yuan, D. D.; Horton, J. H.; Xu, Q. et al. One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin. Appl. Catal. B:Environ. 2021, 298, 120535.

    Article  CAS  Google Scholar 

  30. Li, Z. J.; Wei, W.; Li, H. H.; Li, S. H.; Leng, L. P.; Zhang, M. Y.; Horton, J. H.; Wang, D. S.; Sun, W. W.; Guo, C. M. et al. Low-temperature synthesis of single palladium atoms supported on defective hexagonal boron nitride nanosheet for chemoselective hydrogenation of cinnamaldehyde. ACS Nano 2021, 15, 10175–10184.

    Article  CAS  Google Scholar 

  31. Li, Z. J.; Zhang, M. Y.; Zhang, L. L.; Dong, X. L.; Leng, L. P.; Horton, J. H.; Wang, J. Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Res. 2022, 15, 1338–1346.

    Article  CAS  Google Scholar 

  32. Gu, J.; Jian, M. Z.; Huang, L.; Sun, Z. H.; Li, A. W.; Pan, Y.; Yang, J. Z.; Wen, W.; Zhou, W.; Lin, Y. et al. Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 2021, 16, 1141–1149.

    Article  CAS  Google Scholar 

  33. Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.; Yuan, T. W.; Liu, W.; Wang, X. Q.; Cheong, W. C. et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

    Article  CAS  Google Scholar 

  34. Jones, J.; Xiong, H. F.; Delariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  35. Huang, Z. W.; Ban, T.; Zhang, Y.; Wang, L. P.; Guo, S. F.; Chang, C. R.; Jing, G. H. Boosting the thermal stability and catalytic performance by confining Ag single atom sites over antimony-doped tin oxide via atom trapping. Appl. Catal. B: Environ. 2021, 283, 119625.

    Article  CAS  Google Scholar 

  36. Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

    Article  CAS  Google Scholar 

  37. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  Google Scholar 

  38. Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

    Article  CAS  Google Scholar 

  39. Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. E. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

    Article  Google Scholar 

  40. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  41. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  42. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  43. Blüchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233.

    Article  Google Scholar 

  44. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  45. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  46. Dronskowski, R.; Bloechl, P. E. Crystal orbital hamilton populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617–8624.

    Article  CAS  Google Scholar 

  47. Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

    Article  CAS  Google Scholar 

  48. Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    Article  CAS  Google Scholar 

  49. Xiong, C.; Tian, L.; Xiao, C. C.; Xue, Z. G.; Zhou, F. Y.; Zhou, H.; Zhao, Y. F.; Chen, M.; Wang, Q. P.; Qu, Y. T. et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020, 65, 2100–2106.

    Article  CAS  Google Scholar 

  50. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    Article  CAS  Google Scholar 

  51. Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem., Int. Ed. 2020, 59, 15849–15854.

    Article  CAS  Google Scholar 

  52. Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

    Article  Google Scholar 

  53. Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  CAS  Google Scholar 

  54. Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    Article  CAS  Google Scholar 

  55. Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, H. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 2009, 131, 7086–7093.

    Article  CAS  Google Scholar 

  56. Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc. 2005, 127, 9374–9375.

    Article  CAS  Google Scholar 

  57. Tan, D. W.; Li, H. X.; Zhu, D. L.; Li, H. Y.; Young, D. J.; Yao, J. L.; Lang, J. P. Ligand-controlled copper(I)-catalyzed cross-coupling of secondary and primary alcohols to a-alkylated ketones, pyridines, and quinolines. Org. Lett. 2018, 20, 608–611.

    Article  CAS  Google Scholar 

  58. Zhang, L. L.; Wang, W. T.; Wang, A. Q.; Cui, Y. T.; Yang, X. F.; Huang, Y. Q.; Liu, X. Y.; Liu, W. G.; Son, J. Y.; Oji, H. et al. Aerobic oxidative coupling of alcohols and amines over Au-Pd/resin in water: Au/Pd molar ratios switch the reaction pathways to amides or imines. Green Chem. 2013, 15, 2680–2684.

    Article  CAS  Google Scholar 

  59. Zhou, M. X.; Zhang, L. L.; Miller, J. T.; Yang, X. F.; Liu, X. Y.; Wang, A. Q.; Zhang, T. Hydrogen auto-transfer under aerobic oxidative conditions: Efficient synthesis of saturated ketones by aerobic C-C cross-coupling of primary and secondary alcohols catalyzed by a Au6Pd/resin catalyst. Chin. J. Catal. 2016, 37, 1764–1770.

    Article  CAS  Google Scholar 

  60. Zhang, L. L.; Wang, A. Q.; Wang, W. T.; Huang, Y. Q.; Liu, X. Y.; Miao, S.; Liu, J. Y.; Zhang, T. Co-N-C catalyst for C-C coupling reactions: On the catalytic performance and active sites. ACS Catal. 2015, 5, 6563–6572.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (Nos. 2019M661247 and 2020T130091), Postdoctoral Science Foundation of Heilongjiang Province (No. LBH-Z19047), Scientific Research Foundation for Returned Scholars of Heilongjiang Province of China (No. 719900091), and Heilongjiang Touyan Innovation Team Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Electronic Supplementary Material

12274_2022_4196_MOESM1_ESM.pdf

Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C-C cross-coupling of primary and secondary alcohols

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, Y., Lu, X. et al. Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C-C cross-coupling of primary and secondary alcohols. Nano Res. 15, 4023–4031 (2022). https://doi.org/10.1007/s12274-022-4196-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4196-7

Keywords

Navigation