Skip to main content
Log in

Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing non-precious metal catalysts to selectively reduce functionalized nitroarenes with high efficiency is urgently desirable for the production of value-added amines. Herein, we report a novel, efficient, anti-poisoning single-atom cobalt catalyst (Co-NAC) for the highly selective hydrogenation of the nitro to amino group for nitroarenes baring various functional groups, including vinyl, cyano, and halogen. Using a combination of structure characterization techniques, we have confirmed that the cobalt species are predominantly present in the form of four-coordinated Co single sites anchored on nitrogen-assembly carbon (NAC) as the ordered mesoporous support. Co-NAC catalysts enable the full conversion and > 99% selectivity with molecular H2 as a green reductant under mild conditions (80 °C, 2 MPa H2). As for the selective hydrogenation of 3-nitrostyrene, Co-NAC catalyst affords high catalytic productivity (19.7 h−1), which is superior to the cobalt nanoparticles (NPs) catalysts and most of the recently reported Co-based catalysts. This is attributed to the highly accessible atomically-dispersed Co active sites, the high surface area with ordered-mesoporous morphology and the prominent high content of nitrogen dopants. Notably, Co-NAC catalyst displays resistance towards sulfur-containing poisons (20 equivalents) and strong non-oxidizing acid (8 M), showing great potential for continuous application in the chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B Environ. 2018, 227, 386–108.

    Article  CAS  Google Scholar 

  2. Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Reduction of nitro compounds using 3D-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611–2680.

    Article  CAS  Google Scholar 

  3. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    Article  CAS  Google Scholar 

  4. Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2019, 2, 873–881.

    Article  CAS  Google Scholar 

  5. Trandafir, M. M.; Neaţu, F.; Chirica, I. M.; Neaţu, Ş.; Kuncser, A. C.; Cucolea, E. I.; Natu, V.; Barsoum, M. W.; Florea, M. Highly efficient ultralow Pd loading supported on MAX phases for chemoselective hydrogenation. ACS Catal. 2020, 10, 5899–5908.

    Article  CAS  Google Scholar 

  6. Lara, P.; Philippot, K. The hydrogenation of nitroarenes mediated by platinum nanoparticles: An overview. Catal. Sci. Technol. 2014, 4, 2445–2465.

    Article  CAS  Google Scholar 

  7. Makosch, M.; Lin, W. I.; Bumbálek, V.; Sá, J.; Medlin, J. W.; Hungerbühler, K.; Van Bokhoven, J. A. Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes. ACS Catal. 2012, 2, 2079–2081.

    Article  CAS  Google Scholar 

  8. Li, J.; Long, Y.; Liu, Y.; Zhang, L. L.; Wang, Q. S.; Wang, X.; Song, S. Y.; Zhang, H. J. Robust synthesis of gold-based multishell structures as plasmonic catalysts for selective hydrogenation of 4-nitrostyrene. Angew. Chem., Int. Ed. 2020, 59, 1103–1107.

    Article  CAS  Google Scholar 

  9. Beier, M. J.; Andanson, J. M.; Baiker, A. Tuning the chemoselective hydrogenation of nitrostyrenes catalyzed by ionic liquid-supported platinum nanoparticles. ACS Catal. 2012, 2, 2587–2595.

    Article  CAS  Google Scholar 

  10. Ferlin, F.; Cappelletti, M.; Vivani, R.; Pica, M.; Piermatti, O.; Vaccaro, L. Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes. Green Chem. 2019, 21, 614–626.

    Article  CAS  Google Scholar 

  11. Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed. 2017, 56, 11971–11975.

    Article  CAS  Google Scholar 

  12. Fu, J. H.; Dong, J. H.; Si, R.; Sun, K. J.; Zhang, J. Y.; Li, M. R.; Yu, N. N.; Zhang, B. S.; Humphrey, M. G.; Fu, Q. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021, 11, 1952–1961.

    Article  CAS  Google Scholar 

  13. Gao, S.; Wang, L. X.; Li, H.; Liu, Z. F.; Shi, G. L.; Peng, J. F.; Wang, B.; Wang, W. C.; Cho, K. Core-shell PdAu nanocluster catalysts to suppress sulfur poisoning. Phys. Chem. Chem. Phys. 2021, 23, 15010–15019.

    Article  CAS  Google Scholar 

  14. Heck, K. N.; Nutt, M. O.; Alvarez, P.; Wong, M. S. Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination. J. Catal. 2009, 267, 97–104.

    Article  CAS  Google Scholar 

  15. Wang, W. L.; Zhang, F.; Zhang, Y. F.; Xu, L.; Pei, Y. S.; Niu, J. F. Liquid-phase hydrodechlorination of trichloroethylene driven by nascent H2 under an open system: Hydrogenation activity, solvent effect and sulfur poisoning. J. Environ. Sci. 2021, 108, 96–106.

    Article  CAS  Google Scholar 

  16. Liu, G.; Gao, P. X. A review of NOx storage/reduction catalysts: Mechanism, materials and degradation studies. Catal. Sci. Technol. 2011, 1, 552–568.

    Article  CAS  Google Scholar 

  17. Xiong, R. J.; Ren, W. Q.; Wang, Z. Q.; Zhang, M. H. Triphenylphosphine as efficient antidote for the sulfur-poisoning of the Pd/C hydrogenation catalyst. ChemCatChem 2021, 13, 548–552.

    Article  CAS  Google Scholar 

  18. Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

    Article  CAS  Google Scholar 

  19. Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

    Article  CAS  Google Scholar 

  20. Lakhi, K. S.; Park, D. H.; Al-Bahily, K.; Cha, W.; Viswanathan, B.; Choy, J. H.; Vinu, A. Mesoporous carbon nitrides: Synthesis, functionalization, and applications. Chem. Soc. Rev. 2017, 46, 72–101.

    Article  CAS  Google Scholar 

  21. Li, M. M.; Xu, F.; Li, H. R.; Wang, Y. Nitrogen-doped porous carbon materials: Promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal. Sci. Technol. 2016, 6, 3670–3693.

    Article  CAS  Google Scholar 

  22. Li, G. Q.; Yang, H. H.; Zhang, H. F.; Qi, Z. Y.; Chen, M. D.; Hu, W.; Tian, L. H.; Nie, R. F.; Huang, W. Y. Encapsulation of nonprecious metal into ordered mesoporous N-doped carbon for efficient quinoline transfer hydrogenation with formic acid. ACS Catal. 2018, 8, 8396–8405.

    Article  CAS  Google Scholar 

  23. Li, M. H.; Chen, S. Y.; Jiang, Q. K.; Chen, Q. L.; Wang, X.; Yan, Y.; Liu, J.; Lv, C. C.; Ding, W. P.; Guo, X. F. Origin of the activity of Co-N-C catalysts for chemoselective hydrogenation of nitroarenes. ACS Catal. 2021, 11, 3026–3039.

    Article  CAS  Google Scholar 

  24. Zhang, L. K.; Shang, N. Z.; Gao, S. T.; Wang, J. M.; Meng, T.; Du, C. C.; Shen, T. D.; Huang, J. Y.; Wu, Q. H.; Wang, H. J. et al. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics. ACS Catal. 2020, 10, 8672–8682.

    Article  CAS  Google Scholar 

  25. Chen, S.; Ling, L. L.; Jiang, S. F.; Jiang, H. Selective hydrogenation of nitroarenes under mild conditions by the optimization of active sites in a well defined Co@NC catalyst. Green Chem. 2020, 22, 5730–5741.

    Article  CAS  Google Scholar 

  26. Li, W.; Artz, J.; Broicher, C.; Junge, K.; Hartmann, H.; Besmehn, A.; Palkovits, R.; Beller, M. Superior activity and selectivity of heterogenized cobalt catalysts for hydrogenation of nitroarenes. Catal. Sci. Technol. 2019, 9, 157–162.

    Article  CAS  Google Scholar 

  27. Wei, X. R.; Zhou, M. Y.; Zhang, X. C.; Wang, X. N.; Wu, Z. X. Amphiphilic mesoporous sandwich-structured catalysts for selective hydrogenation of 4-nitrostyrene in water. ACS Appl. Mater. Interfaces 2019, 11, 39116–39124.

    Article  CAS  Google Scholar 

  28. Wei, X. R.; Zhang, Z. J.; Zhou, M. Y.; Zhang, A. J.; Wu, W. D.; Wu, Z. X. Solid-state nanocasting synthesis of ordered mesoporous CoNx-carbon catalysts for highly efficient hydrogenation of nitro compounds. Nanoscale 2018, 10, 16839–16847.

    Article  CAS  Google Scholar 

  29. Sun, X. H.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20–28.

    Article  Google Scholar 

  30. Eckardt, M.; Zaheer, M.; Kempe, R. Nitrogen-doped mesoporous SiC materials with catalytically active cobalt nanoparticles for the efficient and selective hydrogenation of nitroarenes. Sci. Rep. 2018, 8, 2567.

    Article  Google Scholar 

  31. Zhou, P.; Jiang, L.; Wang, F.; Deng, K. J.; Lv, K. L.; Zhang, Z. H. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Sci. Adv. 2017, 3, e1601945.

    Article  Google Scholar 

  32. Zhang, F. W.; Zhao, C.; Chen, S.; Li, H.; Yang, H. Q.; Zhang, X. M. In situ mosaic strategy generated Co-based N-doped mesoporous carbon for highly selective hydrogenation of nitroaromatics. J. Catal. 2017, 348, 212–222.

    Article  CAS  Google Scholar 

  33. Sun, X. H.; Olivos-Suarez, A. I.; Oar-Arteta, L.; Rozhko, E.; Osadchii, D.; Bavykina, A.; Kapteijn, F.; Gascon, J. Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes. ChemCatChem 2017, 9, 1854–1862.

    Article  CAS  Google Scholar 

  34. Sahoo, B.; Formenti, D.; Topf, C.; Bachmann, S.; Scalone, M.; Junge, K.; Beller, M. Biomass-derived catalysts for selective hydrogenation of nitroarenes. ChemSusChem 2017, 10, 3035–3039.

    Article  CAS  Google Scholar 

  35. Wang, X.; Li, Y. W. Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived Co-based catalysts. J. Mol. Catal. A Chem. 2016, 420, 56–65.

    Article  CAS  Google Scholar 

  36. Schwob, T.; Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. Angew. Chem., Int. Ed. 2016, 55, 15175–15179.

    Article  CAS  Google Scholar 

  37. Liu, L. C.; Concepción, P.; Corma, A. Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. J. Catal. 2016, 340, 1–9.

    Article  CAS  Google Scholar 

  38. Luo, Z. C.; Nie, R. F.; Nguyen, V. T.; Biswas, A.; Behera, R. K.; Wu, X.; Kobayashi, T.; Sadow, A.; Wang, B.; Huang, W. Y. et al. Transition metal-like carbocatalyst. Nat. Commun. 2020, 11, 4091.

    Article  CAS  Google Scholar 

  39. Serna, P.; Gates, B. C. Molecular metal catalysts on supports: Organometallic chemistry meets surface science. Acc. Chem. Res. 2014, 47, 2612–2620.

    Article  CAS  Google Scholar 

  40. Bazin, D.; Guczi, L. Soft X-ray absorption spectroscopy in heterogeneous catalysis. Appl. Catal. A Gen. 2001, 213, 147–162.

    Article  CAS  Google Scholar 

  41. Wang, H. J.; Wang, Y.; Li, Y. F.; Lan, X. C.; Ali, B.; Wang, T. F. Highly efficient hydrogenation of nitroarenes by N-doped carbon-supported cobalt single-atom catalyst in ethanol/water mixed solvent. ACS Appl. Mater. Interfaces 2020, 12, 34021–34031.

    Article  CAS  Google Scholar 

  42. Wei, Z. Z.; Wang, J.; Mao, S. J.; Su, D. F.; Jin, H. Y.; Wang, Y. H.; Xu, F.; Li, H. R.; Wang, Y. In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal. 2015, 5, 4783–4789.

    Article  CAS  Google Scholar 

  43. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    Article  CAS  Google Scholar 

  44. Wang, P.; Ren, Y. Y.; Wang, R. T.; Zhang, P.; Ding, M. J.; Li, C. X.; Zhao, D. Y.; Qian, Z.; Zhang, Z. W.; Zhang, L. Y. et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 2020, 11, 1576.

    Article  CAS  Google Scholar 

  45. Jacobs, G.; Ji, Y. Y.; Davis, B. H.; Cronauer, D.; Kropf, A. J.; Marshall, C. L. Fischer-tropsch synthesis: Temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl. Catal. A Gen. 2007, 333, 177–191.

    Article  CAS  Google Scholar 

  46. Jiang, T.; Ellis, D. E. X-ray absorption near edge structures in cobalt oxides. J. Mater. Res. 1996, 11, 2242–2256.

    Article  CAS  Google Scholar 

  47. Hunault, M.; Calas, G.; Galoisy, L.; Lelong, G.; Newville, M. Local ordering around tetrahedral Co2+ in silicate glasses. J. Am. Ceram. Soc. 2014, 97, 60–62.

    Article  CAS  Google Scholar 

  48. Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J. K.; Jia, Q. Y.; Stamatin, S.; Harrington, G. F.; Lyth, S. M.; Krtil, P.; Mukerjee, S. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 2017, 8, 957.

    Article  Google Scholar 

  49. Joyner, R. W.; Van Veen, J. A. R.; Sachtler, W. M. H. Extended X-ray absorption fine structure (EXAFS) study of cobalt-porphyrin catalysts supported on active carbon. J. Chem. Soc., Faraday Trans. 1 1982, 78, 1021–1028.

    Article  CAS  Google Scholar 

  50. Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

    Article  Google Scholar 

  51. Wang, Z. L.; Hao, X. F.; Jiang, Z.; Sun, X. P.; Xu, D.; Wang, J.; Zhong, H. X.; Meng, F. L.; Zhang, X. B. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15070–15073.

    Article  CAS  Google Scholar 

  52. Pisiewicz, S.; Formenti, D.; Surkus, A. E.; Pohl, M. M.; Radnik, J.; Junge, K.; Topf, C.; Bachmann, S.; Scalone, M.; Beller, M. Synthesis of nickel nanoparticles with N-doped graphene shells for catalytic reduction reactions. ChemCatchem 2016, 8, 129–1076.

    Article  CAS  Google Scholar 

  53. Yang, S. L.; Peng, L.; Sun, D. T.; Oveisi, E.; Bulut, S.; Queen, W. L. Metal-organic-framework-derived Co3S4 hollow nanoboxes for the selective reduction of nitroarenes. ChemSusChem 2018, 11, 3131–3138.

    Article  CAS  Google Scholar 

  54. Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped carbon materials. Carbon 2018, 132, 104–140.

    Article  CAS  Google Scholar 

  55. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  56. Li, G. N.; Wang, B.; Resasco, D. E. Water-mediated heterogeneously catalyzed reactions. ACS Catal. 2020, 10, 1294–1309.

    Article  CAS  Google Scholar 

  57. Cheng, T. Y.; Yu, H.; Peng, F.; Wang, H. J.; Zhang, B. S.; Su, D. S. Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catal. Sci. Technol. 2016, 6, 1007–1015.

    Article  CAS  Google Scholar 

  58. Huang, K. T.; Fu, H. Q.; Shi, W.; Wang, H. J.; Cao, Y. H.; Yang, G. X.; Peng, F.; Wang, Q.; Liu, Z. G.; Zhang, B. S. et al. Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co-N-C. J. Catal. 2019, 377, 283–292.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFA0202900), and the National Natural Science Foundation of China (Nos. 21878266, 22078288, and 22108243). L. Q. and Y. T. L. were supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. W. Y. H., J. Q. Y., and X. W. thank the support from Iowa State University. F. D. L. thanks the Startup Fund from the University of Central Florida (UCF). S. H. X. thanks the support from the Preeminent Postdoctoral Program (P3) at UCF. This research used beamline 7-BM (QAS) of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Qi, Wenyu Huang or Zhiguo Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Nie, R., Li, Y. et al. Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Res. 15, 10006–10013 (2022). https://doi.org/10.1007/s12274-022-4294-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4294-6

Keywords

Navigation