Skip to main content
Log in

Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrosynthesis of hydrogen peroxide (H2O2), as a sustainable alternative to the anthraquinone oxidation method, provides the feasibility of directly generating H2O2. Here, we report Cu-doped TiO2 as an efficient electrocatalyst which exhibits the excellent two-electron oxygen reduction reaction (2e ORR) performance with respect to the pristine TiO2. The Cu doping results in the distortion of TiO2 lattice and further forms a large number of oxygen vacancies and Ti3+. Such Cu-doped TiO2 exhibits a positive onset potential about 0.79 V and high H2O2 selectivity about 91.2%. Moreover, it also shows a larger H2O2 yield and good stability. Density functional theory (DFT) calculations reveal that Cu dopant not only improves the electrical conductivity of pristine TiO2 but reduces the *OOH adsorption energy of active sites, which is beneficial to promote subsequently 2e ORR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

    Article  CAS  Google Scholar 

  2. Li, H. B.; Zheng, B.; Pan, Z. Y.; Zong, B. N.; Qiao, M. H. Advances in the slurry reactor technology of the anthraquinone process for H2O2 production. Front. Chem. Sci. Eng. 2018, 12, 124–131.

    Article  CAS  Google Scholar 

  3. Santacesaria, E.; Di Serio, M.; Velotti, R.; Leone, U. Kinetics, mass transfer, and palladium catalyst deactivation in the hydrogenation step of the hydrogen peroxide synthesis via anthraquinone. Ind. Eng. Chem. Res. 1994, 33, 277–284.

    Article  CAS  Google Scholar 

  4. Han, G. H.; Lee, S. H.; Hwang, S. Y.; Lee, K. Y. Advanced development strategy of nano catalyst and DFT calculations for direct synthesis of hydrogen peroxide. Adv. Energy Mater. 2021, 11, 2003121.

    Article  CAS  Google Scholar 

  5. Dittmeyer, R.; Grunwaldt, J. D.; Pashkova, A. A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide. Catal. Today 2015, 248, 149–159.

    Article  CAS  Google Scholar 

  6. Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

    Article  Google Scholar 

  7. Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

    Article  CAS  Google Scholar 

  8. Chen, G. Y.; Liu, J. W.; Li, Q. Q.; Guan, P. F.; Yu, X. F.; Xing, L. S.; Zhang, J.; Che, R. C. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 2019, 12, 2614–2622.

    Article  CAS  Google Scholar 

  9. Cai, H. Z.; Chen, B. B.; Zhang, X.; Deng, Y. C.; Xiao, D. Q.; Ma, D.; Shi, C. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122–130.

    Article  CAS  Google Scholar 

  10. Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.

    Article  CAS  Google Scholar 

  11. Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

    Article  Google Scholar 

  12. Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

    Article  CAS  Google Scholar 

  13. Chang, Q. W.; Zhang, P.; Mostaghimi, A. H. B.; Zhao, X. R.; Denny, S. R.; Lee, J. H.; Gao, H. P.; Zhang, Y.; Xin, H. L.; Siahrostami, S. et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 2020, 11, 2178.

    Article  CAS  Google Scholar 

  14. Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res. 2022, 15, 304–309.

    Article  CAS  Google Scholar 

  15. Wang, M. J.; Zhang, N.; Feng, Y. G.; Hu, Z. W.; Shao, Q.; Huang, X. Q. Partially pyrolyzed binary metal-organic framework nanosheets for efficient electrochemical hydrogen peroxide synthesis. Angew. Chem., Int. Ed. 2020, 59, 14373–14377.

    Article  CAS  Google Scholar 

  16. Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 10583–10587.

    Article  CAS  Google Scholar 

  17. Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; Xie, Z. H.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176.

    Article  CAS  Google Scholar 

  18. Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. CoTe nanoparticleembedded N-doped hollow carbon polyhedron: An efficient catalyst for H2O2 electrosynthesis in acidic media. J. Mater. Chem. A 2021, 9, 21703–21707.

    Article  CAS  Google Scholar 

  19. Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.

    Article  CAS  Google Scholar 

  20. Liang, J.; Wang, Y. Y.; Liu, Q.; Luo, Y. L.; Li, T. S.; Zhao, H. T.; Lu, S. Y.; Zhang, F.; Asiri, A. M.; Liu, F. G. et al. Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 2021, 9, 6117–6122.

    Article  CAS  Google Scholar 

  21. Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by Nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

    Article  CAS  Google Scholar 

  22. Deng, Z. Q.; Ma, C. Q.; Yan, S. H.; Dong, K.; Liu, Q.; Luo, Y. L.; Liu, Y.; Du, J.; Sun, X. P.; Zheng, B. Z. One-dimensional conductive metal-organic framework nanorods: A highly selective electrocatalyst for the oxygen reduction to hydrogen peroxide. J. Mater. Chem. A 2021, 9, 20345–20349.

    Article  CAS  Google Scholar 

  23. Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 2011, 50, 2904–2939.

    Article  CAS  Google Scholar 

  24. Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

    Article  CAS  Google Scholar 

  25. Ghanem, M. A.; Al-Mayouf, A. M.; Shaddad, M. N.; Marken, F. Selective formation of hydrogen peroxide by oxygen reduction on TiO2 nanotubes in alkaline media. Electrochim. Acta 2015, 174, 557–562.

    Article  CAS  Google Scholar 

  26. Xu, Z. Q.; Liang, J.; Wang, Y. Y.; Dong, K.; Shi, X. F.; Liu, Q.; Luo, Y. L.; Li, T. S.; Jia, Y.; Asiri, A. M. et al. Enhanced electrochemical H2O2 production via two-electron oxygen reduction enabled by surface-derived amorphous oxygen-deficient TiO2−x. ACS Appl. Mater. Interfaces 2021, 13, 33182–33187.

    Article  CAS  Google Scholar 

  27. Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449–18453.

    Article  CAS  Google Scholar 

  28. Kuang, M.; Wang, Y.; Fang, W.; Tan, H. T.; Chen, M. X.; Yao, J. D.; Liu, C. T.; Xu, J. W.; Zhou, K.; Yan, Q. Y. Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv. Mater. 2020, 32, 2002189.

    Article  CAS  Google Scholar 

  29. Koketsu, T.; Ma, J. W.; Morgan, B. J.; Body, M.; Legein, C.; Dachraoui, W.; Giannini, M.; Demortiere, A.; Salanne, M.; Dardoize, F. et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 2017, 16, 1142–1148.

    Article  CAS  Google Scholar 

  30. Han, Q.; Wu, C. B.; Jiao, H. M.; Xu, R. Y.; Wang, Y. Z.; Xie, J. J.; Guo, Q.; Tang, J. W. Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis. Adv. Mater. 2021, 33, 2008180.

    Article  CAS  Google Scholar 

  31. Colón, G.; Maicu, M.; Hidalgo, M. C.; Navío, J. A. Cu-Doped TiO2 systems with improved photocatalytic activity. Appl. Catal. B: Environ. 2006, 67, 41–51.

    Article  Google Scholar 

  32. Deng, Z. Q.; Ma, C. Q.; Yan, S. H.; Liang, J.; Dong, K.; Li, T. S.; Wang, Y.; Yue, L. C.; Luo, Y. L.; Liu, Q. et al. Electrocatalytic H2O2 production via two-electron O2 reduction by Mo-doped TiO2 nanocrystallines. Catal. Sci. Technol. 2021, 11, 6970–6974.

    Article  CAS  Google Scholar 

  33. Chen, Q. Y.; Ma, C. Q.; Yan, S. H.; Liang, J.; Dong, K.; Luo, Y. L.; Liu, Q.; Li, T. S.; Wang, Y.; Yue, L. C. et al. Greatly facilitated two-electron electroreduction of oxygen into hydrogen peroxide over TiO2 by Mn doping. ACS Appl. Mater. Interfaces 2021, 13, 46659–46664.

    Article  CAS  Google Scholar 

  34. Wu, T. W.; Zhao, H. T.; Zhu, X. J.; Xing, Z.; Liu, Q.; Liu, T.; Gao, S. Y.; Lu, S. Y.; Chen, G.; Asiri, A. M. et al. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv. Mater. 2020, 32, 2000299.

    Article  CAS  Google Scholar 

  35. Cao, N.; Quan, Y. L.; Guan, A. X.; Yang, C.; Ji, Y. L.; Zhang, L. J.; Zheng, G. F. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 2020, 577, 109–114.

    Article  CAS  Google Scholar 

  36. Yuan, J.; Liu, L.; Guo, R. R.; Zeng, S.; Wang, H.; Lu, J. X. Electroreduction of CO2 into ethanol over an active catalyst: Copper supported on titania. Catalysts 2017, 7, 220.

    Article  Google Scholar 

  37. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

    Article  CAS  Google Scholar 

  39. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  40. Tilocca, A.; Selloni, A. DFT-GGA and DFT + U simulations of thin water layers on reduced TiO2 anatase. J. Phys. Chem. C 2012, 116, 9114–9121.

    Article  CAS  Google Scholar 

  41. García-Mota, M.; Vojvodic, A.; Abild-Pedersen, F.; Nørskov, J. K. Electronic origin of the surface reactivity of transition-metal-doped TiO2(110). J. Phys. Chem. C 2013, 117, 460–465.

    Article  Google Scholar 

  42. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  43. Aguilar, T.; Navas, J.; Alcántara, R.; Fernández-Lorenzo, C.; Gallardo, J. J.; Blanco, G.; Martín-Calleja, J. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chem. Phys. Lett. 2013, 571, 49–53.

    Article  CAS  Google Scholar 

  44. Han, Z. S.; Choi, C.; Hong, S.; Wu, T. S.; Soo, Y. L.; Jung, Y.; Qiu, J.; Sun, Z. Y. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal. B: Environ. 2019, 257, 117896.

    Article  CAS  Google Scholar 

  45. Li, L.; Chen, H. J.; Li, L.; Li, B. H.; Wu, Q. B.; Cui, C. H.; Deng, B.; Luo, Y. L.; Liu, Q.; Li, T. S. et al. La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions. Chin. J. Catal. 2021, 42, 1755–1762.

    Article  CAS  Google Scholar 

  46. Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119.

    Article  CAS  Google Scholar 

  47. Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

    Article  Google Scholar 

  48. Zhao, X.; Wang, Y.; Da, Y. L.; Wang, X. X.; Wang, T. T.; Xu, M. Q.; He, X. Y.; Zhou, W.; Li, Y. F.; Coleman, J. N. et al. Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. Natl. Sci. Rev. 2020, 7, 1360–1366.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Liu, Shihai Yan or Xuping Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Li, L., Ren, Y. et al. Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Res. 15, 3880–3885 (2022). https://doi.org/10.1007/s12274-021-3995-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3995-6

Keywords

Navigation