Skip to main content
Log in

Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na+ insertion/extraction for full sodium ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Generation of large strains upon Na+ intercalation is one of the prime concerns of the mechanical degradation of Prussian blue (PB) and its analogs. Structural construction from the atomic level is imperative to maintain structural stability and ameliorate the long-term stability of PB. Herein, an inter nickel hexacyanoferrate (NNiFCN) is successfully introduced at the out layer of iron hexacyanoferrate (NFFCN) through ion exchange to improve structural stability through compressive stress locking by forming NNiFCN shell. Furthermore, the kinetics of sodium ion diffusion is enhanced through the built-in electric pathway. The electrochemical performance is therefore significantly improved with a remarkable long-term cycling stability over 3,000 cycles at 500 mA·g1 in the full sodium-ion batteries (SIBs) with a maximum energy density of 91.94 Wh·g1, indicating that the core-shell structured NNiFCN/NFFCN could be the low-cost and high-performance cathode for full SIBs in large-scale EES applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirsh, H. S.; Li, Y. X.; Tan, D. H. S.; Zhang, M. H.; Zhao, E. Y.; Meng, Y. S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274.

    Article  CAS  Google Scholar 

  2. Huu, H. T.; Viswanath, N. S. M.; Vu, N. H.; Lee, J. W.; Im, W. B. Low-temperature synthesis of Fe2(MoO4)3nanosheets: A cathode for sodium ion batteries with kinetics enhancement. Nano Res 2021, 14, 3977–3987.

    Article  CAS  Google Scholar 

  3. Ma, X. M.; Cao, X. X.; Zhou, Y. F.; Guo, S.; Shi, X. D.; Fang, G. Z.; Pan, A. Q.; Lu, B. G.; Zhou, J.; Liang, S. Q. Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Res. 2020, 13, 3330–3337.

    Article  CAS  Google Scholar 

  4. Sun, X. P.; Wang, L.; Li, C. C.; Wang, D. B.; Sikandar, I.; Man, R. X.; Tian, F.; Qian, Y. T.; Xu, L. Q. Dandelion-like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassiumion and half/full sodium-ion batteries. Nano Res. 2021, 14, 4696–4703.

    Article  CAS  Google Scholar 

  5. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

    Article  CAS  Google Scholar 

  6. Ni, J. F.; Jiang, J. X.; Savilov, S. V.; Aldoshin, S. M. Anode property of carbon coated LiFePO4 nanocrystals. Funct. Mater. Lett. 2016, 9, 1650004.

    Article  CAS  Google Scholar 

  7. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density. Solid State Ionics 1981, 3–4, 171–174.

    Article  Google Scholar 

  8. Maksud, M.; Palapati, N. K. R.; Byles, B. W.; Pomerantseva, E.; Liu, Y.; Subramanian, A. Dependence of Young’s modulus on the sodium content within the structural tunnels of a one-dimensional Na-ion battery cathode. Nanoscale 2015, 7, 17642–17648.

    Article  CAS  Google Scholar 

  9. Kondrakov, A. O.; Schmidt, A.; Xu, J.; Geßwein, H.; Mönig, R.; Hartmann, P.; Sommer, H.; Brezesinski, T.; Janek, J. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries. J. Phys. Chem. C 2017, 121, 3286–3294.

    Article  CAS  Google Scholar 

  10. Wang, K.; Yan, P. F.; Sui, M. L. Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy 2018, 54, 148–155.

    Article  CAS  Google Scholar 

  11. Zhou, Y.; Liu, D. M.; Su, M. R.; Dou, A. C.; Liu, Y. J. Comparison of fluorine sources on the electrochemical property of Li1.2Ni0.2Mn0.6O2 cathode materials. Funct. Mater. Lett. 2020, 13, 2050027.

    Article  CAS  Google Scholar 

  12. Pu, X. J.; Rong, C.; Tang, S. L.; Wang, H. M.; Cao, S.; Ding, Y.; Cao, Y. L.; Chen, Z. X. Zero-strain Na4Fe7(PO4)6 as a novel cathode material for sodium-ion batteries. Chem. Commun. 2019, 55, 9043–9046.

    Article  CAS  Google Scholar 

  13. Hu, P.; Peng, W. B.; Wang, B.; Xiao, D. D.; Ahuja, U.; Réthoré, J.; Aifantis, K. E. Concentration-gradient Prussian blue cathodes for Na-ion batteries. ACS Energy. Lett. 2020, 5, 100–108.

    Article  CAS  Google Scholar 

  14. Chang, S. Q.; Liu, Y. Z.; Fu, H. L.; Wang, B. X.; Li, Z.; Feng, J. D.; Zhang, X. H.; Dai, Y. D.; Zhang, H. Q. One-pot synthesis of potassium iron hexacyanoferrate/polyacrylamide nanohybrid hydrogel via gamma radiation and its adsorption property. Funct. Mater. Lett. 2019, 12, 1950031.

    Article  Google Scholar 

  15. Kumar, A.; Yusuf, S. M.; Keller, L. Structural and magnetic properties of Fe[Fe(CN)6]·4H2O. Phys. Rev. B 2005, 71, 054414.

    Article  Google Scholar 

  16. Ojwang, D. O.; Häggström, L.; Ericsson, T.; Ångström, J.; Brant, W. R. Influence of sodium content on the thermal behavior of low vacancy Prussian white cathode material. Dalton Trans. 2020, 49, 3570–3579.

    Article  CAS  Google Scholar 

  17. Li, W. J.; Han, C.; Wang, W. L.; Xia, Q. B.; Chou, S. L.; Gu, Q. F.; Johannessen, B.; Liu, H. K.; Dou, S. X. Stress distortion restraint to boost the sodium ion storage performance of a novel binary hexacyanoferrate. Adv. Energy Mater. 2020, 10, 1903006.

    Article  CAS  Google Scholar 

  18. Wang, Z. H.; Huang, Y. X.; Luo, R.; Wu, F.; Li, L.; Xie, M.; Huang, J. Q.; Chen, R. J. Ion-exchange synthesis of high-energy-density Prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability. J. Power Sources 2019, 436, 226868.

    Article  CAS  Google Scholar 

  19. He, X. W.; Tian, L. D.; Qiao, M. T.; Zhang, J. Z.; Geng, W. C.; Zhang, Q. Y. A novel highly crystalline Fe4(Fe(CN)6)3 concave cube anode material for Li-ion batteries with high capacity and long life. J. Mater. Chem. A 2019, 7, 11478–11486.

    Article  CAS  Google Scholar 

  20. Wu, J. P.; Song, J.; Dai, K. H.; Zhuo, Z. Q.; Wray, L. A.; Liu, G.; Shen, Z. X.; Zeng, R.; Lu, Y. H.; Yang, W. L. Modification of transition-metal redox by interstitial water in hexacyanometalate electrodes for sodium-ion batteries. J. Am. Chem. Soc. 2017, 139, 18358–18364.

    Article  CAS  Google Scholar 

  21. Moritomo, Y.; Urase, S.; Shibata, T. Enhanced battery performance in manganese hexacyanoferrate by partial substitution. Electrochim. Acta 2016, 210, 963–969.

    Article  CAS  Google Scholar 

  22. Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

    Article  CAS  Google Scholar 

  23. Zhou, A. J.; Cheng, W. J.; Wang, W.; Zhao, Q.; Xie, J.; Zhang, W. X.; Gao, H. C.; Xue, L. G.; Li, J. Z. Hexacyanoferrate-type Prussian blue analogs: Principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 2021, 11, 2000943.

    Article  CAS  Google Scholar 

  24. Wu, T.; Sun, J. G.; Yap, Z. Q. J.; Ke, M. L.; Lim, C. Y. H.; Lu, L. Substantial doping engineering in Na3V2−xFex(PO4)3 (0<x≤0.15) as high-rate cathode for sodium-ion battery. Mater. Des. 2020, 186, 108287.

    Article  CAS  Google Scholar 

  25. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

    Article  CAS  Google Scholar 

  26. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  27. Jiang, X.; Zhang, T. R.; Yang, L. Q.; Li, G. C.; Lee, J. Y. A Fe/Mn-based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries. ChemElectroChem 2017, 4, 2237–2242.

    Article  CAS  Google Scholar 

  28. Wang, J.; Nie, P.; Ding, B.; Dong, S. Y.; Hao, X. D.; Dou, H.; Zhang, X. G. Biomass derived carbon for energy storage devices. J. Mater. Chem. A 2017, 5, 2411–2428.

    Article  CAS  Google Scholar 

  29. Yan, X. M.; Yang, Y.; Liu, E. S.; Sun, L. Q.; Wang, H.; Liao, X. Z.; He, Y. S.; Ma, Z. F. Improved cycling performance of Prussian blue cathode for sodium ion batteries by controlling operation voltage range. Electrochim. Acta. 2017, 225, 235–242.

    Article  CAS  Google Scholar 

  30. Oliver-Tolentino, M.; González, M. M.; Osiry, H.; Ramos-Sánchez, G.; González, I. Electronic density distribution of Mn-N bonds by a tuning effect through partial replacement of Mn by Co or Ni in a sodium-rich hexacyanoferrate and its influence on the stability as a cathode for Na-ion batteries. Dalton Trans. 2018, 47, 16492–16501.

    Article  CAS  Google Scholar 

  31. Félix, G.; Mikolasek, M.; Shepherd, H. J.; Long, J.; Larionova, J.; Guari, Y.; Itié, J. P.; Chumakov, A. I.; Nicolazzi, W.; Molnár, G. et al. Elasticity of Prussian-blue-analogue nanoparticles. Eur. J. Inorg. Chem. 2018, 2018, 443–448.

    Article  Google Scholar 

  32. Xu, Y.; Wan, J.; Huang, L.; Ou, M. Y.; Fan, C. Y.; Wei, P.; Peng, J.; Liu, Y.; Qiu, Y. G.; Sun, X. P. et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries. Adv. Energy Mater. 2019, 9, 1803158.

    Article  Google Scholar 

  33. Jørgensen, C. K. Absorption Spectra and Chemical Bonding in Complexes; Elsevier: Amsterdam, 2015.

    Google Scholar 

  34. Ling, C.; Chen, J. J.; Mizuno, F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius. J. Phys. Chem. C 2013, 117, 21158–21165.

    Article  CAS  Google Scholar 

  35. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  CAS  Google Scholar 

  36. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

    Article  CAS  Google Scholar 

  37. Dees, D. W.; Kawauchi, S.; Abraham, D. P.; Prakash, J. Analysis of the galvanostatic intermittent titration technique (GITT) as applied to a lithium-ion porous electrode. J. Power Sources 2009, 189, 263–268.

    Article  CAS  Google Scholar 

  38. Pastor-Fernández, C.; Widanage, W. D.; Marco, J.; Gama-Valdez, M. Á.; Chouchelamane, G. H. Identification and quantification of ageing mechanisms in lithium-ion batteries using the EIS technique. In 2016 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, 2016, pp 1–6.

  39. Xu, Y.; Ou, M. Y.; Liu, Y.; Xu, J.; Sun, X. P.; Fang, C.; Li, Q.; Han, J. T.; Huang, Y. H. Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries. Nano Energy 2020, 67, 104250.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. G. S. wants to thanks China Scholarship Council (CSC) for the scholarship support (No. 201706050153). J. G. S. would like to present sincere gratitude to Mr. Weidong Zheng, Dr. Gongxuan Chen, and Dr. Qing Huang for characterization help. We also want to acknowledge High Performance Computing (HPC), NUS Information Technology for the calculation sources support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lu.

Electronic Supplementary Material

12274_2021_3844_MOESM1_ESM.pdf

Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na+ insertion/extraction for full sodium ion battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Ye, H., Oh, J.A.S. et al. Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na+ insertion/extraction for full sodium ion battery. Nano Res. 15, 2123–2129 (2022). https://doi.org/10.1007/s12274-021-3844-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3844-7

Keywords

Navigation