Skip to main content
Log in

Defects inducing anomalous exciton kinetics in monolayer WS2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) transition metal dichalcogenide (TMD) has emerged as an effective optoelectronics material due to its novel optical properties. Understanding the role of defects in exciton kinetics is crucial for achieving high-efficiency TMD devices. Here, we observe defects induced anomalous power dependence exciton dynamics and spatial distribution in hexagonal heterogeneous WS2. With transient absorption microscopy study, we illustrate that these phenomena originate from the competition between radiative and defect-related non-radiative decays. To understand the physics behind this, a decay model is introduced with two defect-related channels, which demonstrates that more excitons decay through non-radiative channels in the dark region than the bright region. Our work reveals the mechanisms of anomalous exciton kinetics by defects and is instrumental for understanding and exploiting excitonic states in emerging 2D semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870–873.

    Article  CAS  Google Scholar 

  2. Liu, H. P.; Lei, W.; Tong, Z. M.; Li, X. J.; Wu, Z. X.; Jia, Q. L.; Zhang, S. W.; Zhang, H. J. Defect engineering of 2D materials for electrochemical energy storage. Adv. Mater. Interfaces 2020, 7, 2000494.

    Article  CAS  Google Scholar 

  3. Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R. T.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002.

    Article  Google Scholar 

  4. Jiang, J.; Xu, T.; Lu, J. P.; Sun, L. T.; Ni, Z. H. Defect engineering in 2D materials: Precise manipulation and improved functionalities. Research 2019, 2019, 4641739.

    Article  CAS  Google Scholar 

  5. Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

    Article  Google Scholar 

  6. Fahey, P. M.; Griffin, P. B.; Plummer, J. D. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 1989, 61, 289–384.

    Article  CAS  Google Scholar 

  7. Cowern, N. E. B.; Janssen, K. T. F.; van de Walle, G. F. A.; Gravesteijn, D. J. Impurity diffusion via an intermediate species: The B-Si system. Phys. Rev. Lett. 1990, 65, 2434–2437.

    Article  CAS  Google Scholar 

  8. Pang, Q. Q.; Niu, Z. L.; Yi, S. S.; Zhang, S.; Liu, Z. Y.; Yue, X. Z. Hydrogen-etched bifunctional sulfur-defect-rich ReS2/CC electrocatalyst for highly efficient HER and OER. Small 2020, 16, 2003007.

    Article  CAS  Google Scholar 

  9. Zhang, Y.; Deng, S. J.; Luo, M.; Pan, G. X.; Zeng, Y. X.; Lu, X. H.; Ai, C. Z.; Liu, Q.; Xiong, Q. Q.; Wang, X. L. et al. Defect promoted capacity and durability of N-MnO2−x, branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small 2019, 15, 1905452.

    Article  CAS  Google Scholar 

  10. Carozo, V.; Wang, Y. X.; Fujisawa, K.; Carvalho, B. R.; McCreary, A.; Feng, S. M.; Lin, Z.; Zhou, C. J.; Perea-López, N.; Elías, A. L. et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv. 2017, 3, e1602813.

    Article  Google Scholar 

  11. Rosenberger, M. R.; Chuang, H. J.; McCreary, K. M.; Li, C. H.; Jonker, B. T. Electrical characterization of discrete defects and impact of defect density on photoluminescence in monolayer WS2. ACS Nano 2018, 12, 1793–1800.

    Article  CAS  Google Scholar 

  12. Zhang, Y. J.; Ideue, T.; Onga, M.; Qin, F.; Suzuki, R.; Zak, A.; Tenne, R.; Smet, J. H.; Iwasa, Y. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 2019, 570, 349–353.

    Article  CAS  Google Scholar 

  13. Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

    Article  CAS  Google Scholar 

  14. Jin, C. H.; Kim, J.; Utama, M. I. B.; Regan, E. C.; Kleemann, H.; Cai, H.; Shen, Y. X.; Shinner, M. J.; Sengupta, A.; Watanabe, K. et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 2018, 360, 893–896.

    Article  CAS  Google Scholar 

  15. Xu, W. G.; Liu, W. W.; Schmidt, J. F.; Zhao, W. J.; Lu, X.; Raab, T.; Diederichs, C.; Gao, W. B.; Seletskiy, D. V; Xiong, Q. H. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 2017, 541, 62–67.

    Article  CAS  Google Scholar 

  16. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

    Article  CAS  Google Scholar 

  17. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  18. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  19. Podzorov, V.; Gershenson, M. E.; Kloc, C.; Zeis, R.; Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 2004, 84, 3301–3303.

    Article  CAS  Google Scholar 

  20. Shi, J. W.; Zhu, J. R.; Wu, X. X.; Zheng, B. Y.; Chen, J.; Sui, X. Y.; Zhang, S.; Shi, J.; Du, W. N.; Zhong, Y. G. et al. Enhanced trion emission and carrier dynamics in monolayer WS2 coupled with plasmonic nanocavity. Adv. Opt. Mater. 2020, 8, 2001147.

    Article  CAS  Google Scholar 

  21. Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

    Article  CAS  Google Scholar 

  22. Tonndorf, P.; Schmidt, R.; Schneider, R.; Kern, J.; Buscema, M.; Steele, G. A.; Castellanos-Gomez, A.; van der Zant, H. S. J.; de Vasconcellos, S. M.; Bratschitsch, R. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2015, 2, 347–352.

    Article  CAS  Google Scholar 

  23. Klein, J.; Kuc, A.; Nolinder, A.; Altzschner, M.; Wierzbowski, J.; Sigger, F.; Kreupl, F.; Finley, J. J.; Wurstbauer, U.; Holleitner, A. W. Robust valley polarization of helium ion modified atomically thin MoS2. 2D Mater. 2017, 5, 011007.

    Article  Google Scholar 

  24. Barja, S.; Wickenburg, S.; Liu, Z. F.; Zhang, Y.; Ryu, H.; Ugeda, M. M.; Hussain, Z.; Shen, Z. X.; Mo, S. K.; Wong, E. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 2016, 12, 751–756.

    Article  CAS  Google Scholar 

  25. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

    Article  CAS  Google Scholar 

  26. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.

    Article  CAS  Google Scholar 

  27. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  CAS  Google Scholar 

  28. Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416–1421.

    Article  CAS  Google Scholar 

  29. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  30. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    Article  CAS  Google Scholar 

  31. Huang, Y.; Sutter, E.; Shi, N. N.; Zheng, J. B.; Yang, T. Z.; Englund, D.; Gao, H. J.; Sutter, P. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 2015, 9, 10612–10620.

    Article  CAS  Google Scholar 

  32. Huang, Y.; Pan, Y. H.; Yang, R.; Bao, L. H.; Meng, L.; Luo, H. L.; Cai, Y. Q.; Liu, G. D.; Zhao, W. J.; Zhou, Z. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.

    Article  CAS  Google Scholar 

  33. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  CAS  Google Scholar 

  34. Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235–5242.

    Article  Google Scholar 

  35. Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    Article  CAS  Google Scholar 

  36. Lu, X.; Utama, M. I. B.; Lin, J. B.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419–2425.

    Article  CAS  Google Scholar 

  37. Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.

    Article  CAS  Google Scholar 

  38. Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

    Article  CAS  Google Scholar 

  39. Seifert, G.; Terrones, H.; Terrones, M.; Jungnickel, G.; Frauenheim, T. Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 2000, 85, 146–149.

    Article  CAS  Google Scholar 

  40. Gong, Y. J.; Lin, J. B.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    Article  CAS  Google Scholar 

  41. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

    Article  CAS  Google Scholar 

  42. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    Article  CAS  Google Scholar 

  43. Lin, W. H.; Tseng, W. S.; Went, C. M.; Teague, M. L.; Rossman, G. R.; Atwater, H. A.; Yeh, N. C. Nearly 90% circularly polarized emission in monolayer WS2 single crystals by chemical vapor deposition. ACS Nano 2020, 14, 1350–1359.

    Article  CAS  Google Scholar 

  44. McCreary, K. M.; Currie, M.; Hanbicki, A. T.; Chuang, H. J.; Jonker, B. T. Understanding variations in circularly polarized photoluminescence in monolayer transition metal dichalcogenides. ACS Nano 2017, 11, 7988–7994.

    Article  CAS  Google Scholar 

  45. Wu, K.; Li, Z.; Tang, J. B.; Lv, X. L.; Wang, H. L.; Luo, R. C.; Liu, P.; Qian, L. H. et al. Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Res. 2018, 11, 4123–4132.

    Article  CAS  Google Scholar 

  46. Lin, Y. C.; Li, S. S.; Komsa, H. P.; Chang, L. J.; Krasheninnikov, A. V; Eda, G.; Suenaga, K. Revealing the atomic defects of WS2 governing its distinct optical emissions. Adv. Funct. Mater. 2018, 28, 1704210.

    Article  Google Scholar 

  47. An, G. H.; Yun, S. J.; Lee, Y. H.; Lee, H. S. Growth mechanism of alternating defect domains in hexagonal WS2 via inhomogeneous W-precursor accumulation. Small 2020, 16, 2003326.

    Article  CAS  Google Scholar 

  48. Jeong, H. Y.; Jin, Y.; Yun, S. J.; Zhao, J.; Baik, J.; Keum, D. H.; Lee, H. S.; Lee, Y. H. Heterogeneous defect domains in single-crystalline hexagonal WS2. Adv. Mater. 2017, 29, 1605043.

    Article  Google Scholar 

  49. Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339–345.

    Article  CAS  Google Scholar 

  50. Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072–1080.

    Article  CAS  Google Scholar 

  51. Chen, K.; Ghosh, R.; Meng, X. H.; Roy, A.; Kim, J. S.; He, F.; Mason, S. C.; Xu, X. C.; Lin, J. F.; Akinwande, D. et al. Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2. npj 2D Mater. Appl. 2017, 1, 15.

    Article  Google Scholar 

  52. Li, L. S.; Carter, E. A. Defect-mediated charge-carrier trapping and nonradiative recombination in WSe2 monolayers. J. Am. Chem. Soc. 2019, 141, 10451–10461.

    Article  CAS  Google Scholar 

  53. Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

    Article  Google Scholar 

  54. He, Z. Y.; Wang, X. C.; Xu, W. S.; Zhou, Y. Q.; Sheng, Y. W.; Rong, Y. M.; Smith, J. M.; Warner, J. H. Revealing defect-state photoluminescence in monolayer WS2 by cryogenic laser processing. ACS Nano 2016, 10, 5847–5855.

    Article  CAS  Google Scholar 

  55. Ou, Z. W.; Wang, T.; Tang, J. B.; Zong, X. R.; Wang, W.; Guo, Q. B.; Xu, Y. H.; Zhu, C.; Wang, L.; Huang, W. et al. Enabling and controlling negative photoconductance of FePS3 nanosheets by hot carrier trapping. Adv. Opt. Mater. 2020, 8, 2000201.

    Article  CAS  Google Scholar 

  56. Chu, Z. D.; Wang, C. Y.; Quan, J. M.; Zhang, C. H.; Lei, C.; Han, A. L.; Ma, X. J.; Tang, H. L.; Abeysinghe, D.; Staab, M. et al. Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging. Proc. Natl. Acad. Sci. USA 2020, 117, 13908–13913.

    Article  CAS  Google Scholar 

  57. Yuan, L.; Wang, T.; Zhu, T.; Zhou, M. W.; Huang, L. B. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J. Phys. Chem. Lett. 2017, 8, 3371–3379.

    Article  CAS  Google Scholar 

  58. Liu, X.; Hu, J.; Yue, C. L.; Della Fera, N.; Ling, Y.; Mao, Z. Q.; Wei, J. High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 2014, 8, 10396–10402.

    Article  CAS  Google Scholar 

  59. Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

    Article  CAS  Google Scholar 

  60. Yuan, S. J.; Roldán, R.; Katsnelson, M. I.; Guinea, F. Effect of point defects on the optical and transport properties of MoS2 and WS2. Phys. Rev. B 2014, 90, 041402.

    Article  CAS  Google Scholar 

  61. Pandey, M.; Rasmussen, F. A.; Kuhar, K.; Olsen, T.; Jacobsen, K. W.; Thygesen, K. S. Defect-tolerant monolayer transition metal dichalcogenides. Nano Lett. 2016, 16, 2234–2239.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (No. 2019YFE0120300), the National Natural Science Foundation of China (No. 11904266), the Fundamental Research Funds for the Central Universities (No. 2042021kf0202), and the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2020WNLOKF014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ti Wang or Hongxing Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zeng, Y., Ou, Z. et al. Defects inducing anomalous exciton kinetics in monolayer WS2. Nano Res. 15, 1616–1622 (2022). https://doi.org/10.1007/s12274-021-3710-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3710-7

Keywords

Navigation