Skip to main content
Log in

Mixed-dimensional stacked nanocomposite structures for a specific wavelength-selectable ambipolar photoresponse

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mixed-dimensional composite structures using zero-dimensional (0D) quantum dots (QDs) and two-dimensional (2D) transition metal dichalcogenides (TMDs) materials are expected to attract great interest in optoelectronics due to the potential to generate new optical properties. Here, we report on the unique optical characteristics of a devices with mixed dimensional vertically stacked structures based on tungsten diselenide (WSe2)/CdSeS QDs monolayer/molybdenum disulfide (MoS2) (2D/0D/2D). Specifically, it exhibits an ambipolar photoresponse characteristic, with a negative photoresponse observed in the 400–600 nm wavelength range and a positive photoresponse appeared at 700 nm wavelength. It resulted in the high negative responsivity of up to 52.22 mA·W−1 under 400 nm, which is 163 times higher than that of the photodetector without CdSeS QDs. We also demonstrated the negative photoresponse, which could be due to increased carrier collision probability and non-radiative recombination. Device modeling and simulation reveal that Auger recombination among the types of non-radiative recombination is the main cause of negative photocurrent generation. Consequently, we discovered ambipolar photoresponse near a specific wavelength corresponding to the energy of quantum dots. Our study revealed interesting phenomenon in the mixed low-dimensional stacked structure and paved the way to exploit it for the development of innovative photodetection materials as well as for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  CAS  PubMed  Google Scholar 

  2. Velusamy, D. B.; Kim, R. H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S. H.; Song, G.; Cho, S. M.; Cho, S. H.; Hwang, I. et al. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 2015, 6, 8063.

    Article  PubMed  Google Scholar 

  3. Zeng, Q. S.; Liu, Z. Novel optoelectronic devices: Transition-metal-dichalcogenide-based 2D heterostructures. Adv. Electron. Mater. 2018, 4, 1700335.

    Article  Google Scholar 

  4. Pospischil, A.; Mueller, T. Optoelectronic devices based on atomically thin transition metal dichalcogenides. Appl. Sci. 2016, 6, 78.

    Article  Google Scholar 

  5. Bao, X. Z.; Ou, Q. D.; Xu, Z. Q.; Zhang, Y. P.; Bao, Q. L.; Zhang, H. Band structure engineering in 2D materials for optoelectronic applications. Adv. Mater. Technol. 2018, 3, 1800072.

    Article  Google Scholar 

  6. Choi, J.; Zhang, H. Y.; Choi, J. H. Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. ACS Nano 2016, 10, 1671–1680.

    Article  CAS  PubMed  Google Scholar 

  7. Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

    Article  CAS  Google Scholar 

  8. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Q. X.; Zhang, Q.; Luo, X.; Wang, J. Y.; Zhu, R.; Liang, Q. J.; Zhang, L.; Yong, J. Z.; Yu Wong, C. P.; Eda, G. et al. Optoelectronic properties of a van der waals WS2 monolayer/2D perovskite vertical heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 45235–45242.

    Article  CAS  PubMed  Google Scholar 

  10. Jariwala, D.; Davoyan, A. R.; Tagliabue, G.; Sherrott, M. C.; Wong, J.; Atwater, H. A. Near- unity absorption in van der waals semiconductors for ultrathin optoelectronics. Nano Lett. 2016, 16, 5482–5487.

    Article  CAS  PubMed  Google Scholar 

  11. Liao, W. G.; Huang, Y. T.; Wang, H. D.; Zhang, H. Van der Waals heterostructures for optoelectronics: Progress and prospects. Appl. Mater. Today 2019, 16, 435–455.

    Article  Google Scholar 

  12. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

    Article  CAS  PubMed  Google Scholar 

  13. Lin, P.; Zhu, L. P.; Li, D.; Xu, L.; Pan, C. F.; Wang, Z. L. Piezophototronic effect for enhanced flexible MoS2/WSe2 van der Waals photodiodes. Adv. Funct. Mater. 2018, 28, 1802849.

    Article  Google Scholar 

  14. Sun, M. X.; Fang, Q. Y.; Xie, D.; Sun, Y. L.; Xu, J. L.; Teng, C. J.; Dai, R. X.; Yang, P.; Li, Z. X.; Li, W. W. et al. Novel transfer behaviors in 2D MoS2/WSe2 heterotransistor and its applications in visible-near infrared photodetection. Adv. Electron. Mater. 2017, 3, 1600502.

    Article  Google Scholar 

  15. Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

    Article  CAS  PubMed  Google Scholar 

  16. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

    Article  CAS  PubMed  Google Scholar 

  17. De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

    Article  CAS  PubMed  Google Scholar 

  19. Sun, Y. L.; Xie, D.; Sun, M. X.; Teng, C. J.; Qian, L.; Chen, R. S.; Xiang, L.; Ren, T. L. Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection. Sci. Rep. 2018, 8, 5107.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moon, B. J.; Lee, K. S.; Shim, J.; Park, S.; Kim, S. H.; Bae, S.; Park, M.; Lee, C. L.; Choi, W. K.; Yi, Y. et al. Enhanced photovoltaic performance of inverted polymer solar cells utilizing versatile chemically functionalized ZnO@graphene quantum dot monolayer. Nano Energy 2016, 20, 221–232.

    Article  CAS  Google Scholar 

  21. Park, Y. J.; Lee, K. S.; Lim, G. H.; Seo, H. W.; Kim, S. W.; Kim, M.; Yi, Y.; Lee, H. S.; Son, D. I. Role of CdSe and CdSe@ZnS quantum dots interlayers conjugated in inverted polymer solar cells. Org. Electron. 2020, 82, 105707.

    Article  CAS  Google Scholar 

  22. Liu, W. Y.; Lee, J. S.; Talapin, D. V. III-V nanocrystals capped with molecular metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 2013, 135, 1349–1357.

    Article  CAS  PubMed  Google Scholar 

  23. Herring, P. K.; Hsu, A. L.; Gabor, N. M.; Shin, Y. C.; Kong, J.; Palacios, T.; Jarillo-Herrero, P. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple. Nano Lett. 2014, 14, 901–907.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, J. T.; Wang, H.; Ma, L.; Zou, G. F. Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure. Nano Res. 2021, 14, 3416–3422.

    Article  CAS  Google Scholar 

  25. Nguyen, V. T.; Yim, W.; Park, S. J.; Son, B. H.; Kim, Y. C.; Cao, T. T.; Sim, Y.; Moon, Y. J.; Nguyen, V. C.; Seong, M. J. et al. Phototransistors with negative or ambipolar photoresponse based on as-grown heterostructures of single-walled carbon nanotube and MoS2. Adv. Funct. Mater. 2018, 28, 1802572.

    Article  Google Scholar 

  26. Lim, G. H.; Lee, K. S.; Park, Y. J.; Shim, J.; Choi, J. W.; Kim, M.; Jin, Y.; Lim, B.; Yi, Y.; Lee, C. L. et al. Charge transport effect and photovoltaic conversion of two-dimensional CdSeS quantum dot monolayers in inverted polymer solar cells. J. Mater. Chem. C 2019, 7, 11797–11805.

    Article  CAS  Google Scholar 

  27. Moon, B. J.; Cho, S.; Lee, K. S.; Bae, S.; Lee, S.; Hwang, J. Y.; Angadi, B.; Yi, Y.; Park, M.; Son, D. I. Enhanced photovoltaic performance of inverted polymer solar cells utilizing multifunctional quantum-dot monolayers. Adv. Energy Mater. 2015, 5, 1401130.

    Article  Google Scholar 

  28. Lee, J. S.; Choi, S. H.; Yun, S. J.; Kim, Y. I.; Boandoh, S.; Park, J. H.; Shin, B. G.; Ko, H.; Lee, S. H.; Kim, Y. M. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain Formation. Science 2018, 362, 817–821.

    Article  CAS  PubMed  Google Scholar 

  29. Shim, J.; Lee, J. S.; Lee, J. H.; Yun, Y. J.; Park, S. K.; Angadi, B.; Son, D. I. Memory effect of vertically stacked hBN/QDs/hBN structures based on quantum-dot monolayers sandwiched between hexagonal boron nitride layer. Compos. B. Eng. 2021, 225, 109307.

    Article  CAS  Google Scholar 

  30. Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in monoand few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, G.; Glazov, M. M.; Robert, C.; Amand, T.; Marie, X.; Urbaszek, B. Double resonant Raman scattering and valley coherence generation in monolayer WSe2. Phys. Rev. Lett. 2015, 115, 117401.

    Article  CAS  PubMed  Google Scholar 

  32. Yin, J. D.; Li, J. R.; Chen, H.; Wang, J. T.; Yan, P. G.; Liu, M. L.; Liu, W. J.; Lu, W.; Xu, Z. H.; Zhang, W. F. et al. Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers. Opt. Express 2017, 25, 30020–30031.

    Article  CAS  PubMed  Google Scholar 

  33. Varshney, U.; Aggarwal, N.; Gupta, G. Current advances in solarblind photodetection technology: Using Ga2O3 and AlGaN. J. Mater. Chem. C 2022, 10, 1573–1593.

    Article  CAS  Google Scholar 

  34. Müller, J.; Lupton, J. M.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H. Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures. Phys. Rev. B 2005, 72, 205339.

    Article  Google Scholar 

  35. Empedocles, S. A.; Neuhauser, R.; Shimizu, K.; Bawendi, M. G. Photoluminescence from single semiconductor nanostructures. Adv. Mater. 1999, 11, 1243–1256.

    Article  CAS  Google Scholar 

  36. Biswas, C.; Jeong, H.; Jeong, M. S.; Yu, W. J.; Pribat, D.; Lee, Y. H. Quantum dot-carbon nanotube hybrid phototransistor with an enhanced optical stark effect. Adv. Funct. Mater. 2013, 23, 3653–3660.

    Article  CAS  Google Scholar 

  37. Zhao, S.; Wu, J. B.; Xu, Y.; Zhang, X.; Han, Y. D.; Xing, H. Z. CdS/Ag2S/g-C3N4 ternary composites with superior photocatalytic performance for hydrogen evolution under visible light irradiation. Dalton Trans. 2021, 50, 3253–3260.

    Article  CAS  PubMed  Google Scholar 

  38. Li, X. Y.; Zhao, Y. B.; Fan, F. J.; Levina, L.; Liu, M.; Quintero-Bermudez, R.; Gong, X. W.; Quan, L. N.; Fan, J.; Yang, Z. Y. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 2018, 12, 159–164.

    Article  CAS  Google Scholar 

  39. Sanchez, O. L.; Ovchinnikov, D.; Misra, S.; Allain, A.; Kis, A. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett. 2016, 16, 5792–5797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial support from the KIST Institution Program (No. 2E32634) and Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (Nos. NRF-2017R1A2B3002307 and NRF-2016M3A7B4900135). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1A6A3A01099388) and the National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (Nos. NRF-2022M3H4A1A04074153 and RS-2023-00239634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ick Son.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y.J., Shim, J., Lee, J.S. et al. Mixed-dimensional stacked nanocomposite structures for a specific wavelength-selectable ambipolar photoresponse. Nano Res. 17, 5549–5558 (2024). https://doi.org/10.1007/s12274-024-6422-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6422-y

Keywords

Navigation