Skip to main content
Log in

Multi-time scale photoelectric behavior in facile fabricated transparent and flexible silicon nanowires aerogel membrane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, transparent and flexible materials have been widely pursued in electronics and optoelectronics fields for usage as planar electrodes, energy conversion components and sensing units. As the most widely applied semiconductor material, the related progress in silicon is of great significance although with large difficulty. Herein, we report a one-step method to achieve flexible and transparent silicon nanowires aerogel membrane. A competitive carrier kinetics involving interfacial trapped carriers and the valence electrons transition is demonstrated, according to the photoelectric performance of a sandwiched graphene/silicon nanowires membrane/Al device, i.e., rapidly positive photoresponse dominated by laser excited free-carriers generation (∼ 500 ms) and subsequent slow negative photocurrent evolution due to laser heating involved multi-levels process (> 10 s). These results contribute to fabrication of silicon nanowire self-assembly structures and also the exploration of their optoelectrical properties in flexible and transparent devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xue, J.; Song, J. Z.; Dong, Y. H.; Xu, L. M.; Li, J. H.; Zeng, H. B. Nanowire-based transparent conductors for flexible electronics and optoelectronics. Sci. Bull. 2017, 62, 143–156.

    Article  CAS  Google Scholar 

  2. Abbas, S.; Kumar, M.; Kim, J. All metal oxide-based transparent and flexible photodetector. Mater. Sci. Semicond. Process. 2018, 88, 86–92.

    Article  CAS  Google Scholar 

  3. Patel, D. B.; Patel, M.; Chauhan, K. R.; Kim, J.; Oh, M. S.; Kim, J. W. High-performing flexible and transparent photodetector by using silver nanowire-networks. Mater. Res. Bull. 2018, 97, 244–250.

    Article  CAS  Google Scholar 

  4. Lai, W. E.; Yuan, H.; Fang, H. Y.; Zhu, Y. H.; Wu, H. Z. Ultrathin, highly flexible and optically transparent terahertz polarizer based on transparent conducting oxide. J. Phys. D: Appl. Phys. 2020, 53, 125109.

    Article  CAS  Google Scholar 

  5. Zheng, Z.; Gan, L.; Li, H. Q.; Ma, Y.; Bando, Y.; Golberg, D.; Zhai, T. Y. A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays. Adv. Funct. Mater. 2015, 25, 5885–5894.

    Article  CAS  Google Scholar 

  6. Zhou, Y. L.; Chen, J. W.; Yu, R. J.; Li, E. L.; Yan, Y. J.; Huang, J. S.; Wu, S. Y.; Chen, H. P.; Guo, T. L. A full transparent high-performance flexible phototransistor with an ultra-short channel length. J. Mater. Chem. C 2021, 9, 1604–1613.

    Article  CAS  Google Scholar 

  7. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

    Article  CAS  Google Scholar 

  8. Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122.

    Article  CAS  Google Scholar 

  9. Zhang, X. Y.; Tang, Z.; Tian, D.; Liu, K. Y.; Wu, W. A self-healing flexible transparent conductor made of copper nanowires and polyurethane. Mater. Res. Bull. 2017, 90, 175–181.

    Article  CAS  Google Scholar 

  10. Jeon, Y. P.; Woo, S. J.; Kim, T. W. Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles. Appl. Surf. Sci. 2018, 434, 375–381.

    Article  CAS  Google Scholar 

  11. Xu, R. X.; Min, L. L.; Qi, Z. M.; Zhang, X. Y.; Jian, J.; Ji, Y. D.; Qian, F. J.; Fan, J. Y.; Kan, C. X.; Wang, H. Y. et al. Perovskite transparent conducting oxide for the design of a transparent, flexible, and self-powered perovskite photodetector. ACS Appl. Mater. Interfaces 2020, 12, 16462–16468.

    Article  CAS  Google Scholar 

  12. Liu, Z. K.; You, P.; Xie, C.; Tang, G. Q.; Yan, F. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 2016, 28, 151–157.

    Article  CAS  Google Scholar 

  13. Kukobat, R.; Kamijyou, Y.; Stevic, D.; Furuse, A.; Hayashi, T.; Sakai, T.; Neimark, A. V.; Kaneko, K. Thermally stable near UV-light transparent and conducting SWCNT/glass flexible films. Carbon, 2019, 152, 7–15.

    Article  CAS  Google Scholar 

  14. Shen, R. Z.; Sun, Z. H.; Shi, Y. B.; Zhou, Y. R.; Guo, W. W.; Zhou, Y. Q.; Yan, H.; Liu, F. Z. Solution processed organic/silicon nanowires hybrid heterojunction solar cells using organosilane incorporated poly(3, 4-ethylenedioxythiophene): Poly(styrenesulfonate) as hole transport layers. ACS Nano, 2021, 15, 6296–6304.

    Article  CAS  Google Scholar 

  15. Kim, J.; Kim, H. R.; Lee, H. C.; Kim, K. H.; Hwang, M. S.; Lee, J. M.; Jeong, K. Y.; Park, H. G. Photon-triggered current generation in chemically-synthesized silicon nanowires. Nano Lett. 2019, 19, 1269–1274.

    Article  Google Scholar 

  16. Baek, E.; Rim, T.; Schütt, J.; Baek, C. K.; Kim, K.; Baraban, L.; Cuniberti, G. Negative photoconductance in heavily doped Si nanowire field-effect transistors. Nano Lett. 2017, 17, 6727–6734.

    Article  CAS  Google Scholar 

  17. Sun, B.; Sun, Y.; Wang, C. X. Flexible transparent and free-standing SiC nanowires fabric: Stretchable UV absorber and fast-response UV-A detector. Small. 2018, 14, 1703391.

    Article  Google Scholar 

  18. Pang, C. L.; Cui, H.; Yang, G. W.; Wang, C. X. Flexible transparent and free-standing silicon nanowires paper. Nano Lett. 2013, 13, 4708–4714.

    Article  CAS  Google Scholar 

  19. Jin, R. X.; Yang, Y.; Xing, Y.; Chen, L.; Song, S. Y.; Jin, R. C. Facile synthesis and properties of hierarchical double-walled copper silicate hollow nanofibers assembled by nanotubes. ACS Nano, 2014, 8, 3664–3670.

    Article  CAS  Google Scholar 

  20. Mulazimoglu, E.; Coskun, S.; Gunoven, M.; Butun, B.; Ozbay, E.; Turan, R.; Unalan, H. E. Silicon nanowire network metal-semiconductor-metal photodetectors. Appl. Phy. Lett. 2013, 103, 083114.

    Article  Google Scholar 

  21. Lee, S. T.; Wang, N.; Zhang, Y. F.; Tang, Y. H. Oxide-assisted semiconductor nanowire growth. MRS Bull. 1999, 24, 36–42.

    Article  CAS  Google Scholar 

  22. Dubrovskii, V. G.; Kim, W.; Piazza, V.; Güniat, L.; Morral, A. F. I. Simultaneous selective area growth of wurtzite and zincblende self-catalyzed GaAs nanowires on silicon. Nano Lett. 2021, 21, 3139–3145.

    Article  CAS  Google Scholar 

  23. Jung, S. M.; Preston, D. J.; Jung, H. Y.; Deng, Z. T.; Wang, E. N.; Kong, J. Porous Cu nanowire aerosponges from one-step assembly and their applications in heat dissipation. Adv. Mater. 2016, 28, 1413–1419.

    Article  CAS  Google Scholar 

  24. Qian, F.; Lan, P. C.; Freyman, M. C.; Chen, W.; Kou, T. Y.; Olson, T. Y.; Zhu, C.; Worsley, M. A.; Duoss, E. B.; Spadaccini, C. M. et al. Ultralight conductive silver nanowire aerogels. Nano Lett. 2017, 17, 7171–7176.

    Article  CAS  Google Scholar 

  25. Su, L.; Wang, H. J.; Niu, M.; Fan, X. Y.; Ma, M. B.; Shi, Z. Q.; Guo, S. W. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano, 2018, 12, 3103–3111.

    Article  CAS  Google Scholar 

  26. Zhang, A.; Kim, H.; Cheng, J.; Lo, Y. H. Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett. 2010, 10, 2117–2120.

    Article  CAS  Google Scholar 

  27. Hossain, M.; Kumar, G. S.; Prabhava, S. N. B.; Sheerin, E. D.; McCloskey, D.; Acharya, S.; Rao, K. D. M.; Boland, J. J. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications. ACS Nano, 2018, 12, 4727–4735.

    Article  CAS  Google Scholar 

  28. Lefler, S.; Vizel, R.; Yeor, E.; Granot, E.; Heifler, O.; Kwiat, M.; Krivitsky, V.; Weil, M.; Yaish, Y. E.; Patolsky, F. Multicolor spectral-specific silicon nanodetectors based on molecularly embedded nanowires. Nano Lett. 2018, 18, 190–201.

    Article  CAS  Google Scholar 

  29. Kim, J.; Lee, H. C.; Kim, K. H.; Hwang, M. S.; Park, J. S.; Lee, J. M.; So, J. P.; Choi, J. H.; Kwon, S. H.; Barrelet, C. J. et al. Photon-triggered nanowire transistors. Nat. Nanotechnol. 2017, 12, 963–968.

    Article  CAS  Google Scholar 

  30. Lenahan, P. M.; Dressendorfer, P. V. Effect of bias on radiation-induced paramagnetic defects at the silicon-silicon dioxide interface. Appl. Phy. Lett. 1982, 41, 542–544.

    Article  CAS  Google Scholar 

  31. Schmidt, V.; Senz, S.; Gösele, U. Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires. App. Phy. A 2007, 86, 187–191.

    Article  CAS  Google Scholar 

  32. DiMaria, D. J.; Stasiak, J. W. Trap creation in silicon dioxide produced by hot electrons. J. Appl. Phys. 1989, 65, 2342–2356.

    Article  CAS  Google Scholar 

  33. Yang, H.; Tan, C. W.; Deng, C. Y.; Zhang, R. Y.; Zheng, X. M.; Zhang, X. Z.; Hu, Y. Z.; Guo, X. X.; Wang, G.; Jiang, T. et al. Bolometric effect in Bi2O2Se photodetectors. Small, 2019, 15, 1904482.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. U1801255, 91963210, and 51772339).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Sun or Chengxin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., He, J., Zou, X. et al. Multi-time scale photoelectric behavior in facile fabricated transparent and flexible silicon nanowires aerogel membrane. Nano Res. 15, 1609–1615 (2022). https://doi.org/10.1007/s12274-021-3709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3709-0

Keywords

Navigation