Skip to main content
Log in

Single-walled carbon nanotube based SERS substrate with single molecule sensitivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In single molecule study, surface-enhanced Raman scattering (SERS) has the advantage of specifically providing structural information of the molecules targeted. The main challenge in single molecule SERS is developing reusable plasmonic substrates that ensures single molecule sensitivity and acquires intrinsic information of molecules. Here, we proposed a strategy to utilize single-walled carbon nanotubes (SWNTs) to construct SERS substrates. Employing ultrasonic spray pyrolysis, we prepared in situ polyhedral gold nanocrystals closely spaced and attached to nanotubes, ensuring valid hot spots formed along the tube-walls. With such SERS substrates, we proved the single molecule detection by the statistical analysis based on the natural abundance of isotopes. Since SWNTs provide non-chemical bonding adsorption sites, our SERS substrates are easily reusable and have a unique advantage of preserving the intrinsic property of the molecules detected. Using SWNTs to build SERS substrates may become a powerful general strategy in various static and dynamic studies of single molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betzig, E.; Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 1993, 262, 1422–1425.

    Article  CAS  Google Scholar 

  2. Gimzewski, J. K.; Joachim, C. Nanoscale science of single molecules using local probes. Science 1999, 283, 1683–1688.

    Article  CAS  Google Scholar 

  3. Ambrose, W. P.; Goodwin, P. M.; Jett, J. H.; Van Orden, A.; Werner, J. H.; Keller, R. A. Single molecule fluorescence spectroscopy at ambient temperature. Chem. Rev. 1999, 99, 2929–2956.

    Article  CAS  Google Scholar 

  4. Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon. 2009, 3, 654–657.

    Article  CAS  Google Scholar 

  5. Kim, Z. H. Single-molecule surface-enhanced Raman scattering: Current status and future perspective. Front. Phys. 2014, 9, 25–30.

    Article  Google Scholar 

  6. Zhan, C.; Wang, Z. Y.; Zhang, X. G.; Chen, X. J.; Huang, Y. F.; Hu, S.; Li, J. F.; Wu, D. Y.; Moskovits, M.; Tian, Z. Q. Interfacial construction of plasmonic nanostructures for the utilization of the plasmonexcited electrons and holes. J. Am. Chem. Soc. 2019, 141, 8053–8057.

    Article  CAS  Google Scholar 

  7. Neuman, K. C.; Nagy, A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Meth. 2008, 5, 491–505.

    Article  CAS  Google Scholar 

  8. Celedon, A.; Nodelman, I. M.; Wildt, B.; Dewan, R.; Searson, P.; Wirtz, D.; Bowman, G. D.; Sun, S. X. Magnetic tweezers measurement of single molecule torque. Nano Lett. 2009, 9, 1720–1725.

    Article  CAS  Google Scholar 

  9. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

    Article  CAS  Google Scholar 

  10. Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    Article  CAS  Google Scholar 

  11. Park, W. H.; Kim, Z. H. Charge transfer enhancement in the SERS of a single molecule. Nano Lett. 2010, 10, 4040–4048.

    Article  CAS  Google Scholar 

  12. Zhang, Y.; Zhen, Y. R.; Neumann, O.; Day, J. K.; Nordlander, P.; Halas, N. J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 2014, 5, 4424.

    Article  CAS  Google Scholar 

  13. Cortés, E.; Etchegoin, P. G.; Le Ru, E. C.; Fainstein, A.; Vela, M. E.; Salvarezza, R. C. Strong correlation between molecular configurations and charge-transfer processes probed at the single-molecule level by surface-enhanced raman scattering. J. Am. Chem. Soc. 2013, 135, 2809–2815.

    Article  Google Scholar 

  14. Zrimsek, A. B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M. O.; Chapman, C. T.; Henry, A. I.; Schatz, G. C.; Van Duyne, R. P. Single-molecule chemistry with surface- and tip-enhanced raman spectroscopy. Chem. Rev. 2017, 117, 7583–7613.

    Article  CAS  Google Scholar 

  15. Tran, V.; Thiel, C.; Svejda, J. T.; Jalali, M.; Walkenfort, B.; Erni, D.; Schlücker, S. Probing the SERS brightness of individual Au nanoparticles, hollow Au/Ag nanoshells, Au nanostars and Au core/Au satellite particles: Single-particle experiments and computer simulations. Nanoscale 2018, 10, 21721–21731.

    Article  CAS  Google Scholar 

  16. Nikoobakht, B.; Wang, J. P.; El-Sayed, M. A. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: Off-surface plasmon resonance condition. Chem. Phys. Lett. 2002, 366, 17–23.

    Article  CAS  Google Scholar 

  17. Hu, S.; Liu, B. J.; Feng, J. M.; Zong, C.; Lin, K. Q.; Wang, X.; Wu, D. Y.; Ren, B. Quantifying surface temperature of thermoplasmonic nanostructures. J. Am. Chem. Soc. 2018, 140, 13680–13686.

    Article  CAS  Google Scholar 

  18. Xu, M.; Tu, G. P.; Ji, M. W.; Wan, X. D.; Liu, J. J.; Liu, J.; Rong, H. P.; Yang, Y. L.; Wang, C.; Zhang, J. T. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multidimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res. 2019, 12, 1375–1379.

    Article  CAS  Google Scholar 

  19. Liu, Y. S.; Luo, F. Large-scale highly ordered periodic Au nanodiscs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res. 2019, 12, 2788–2795.

    Article  CAS  Google Scholar 

  20. Abalde-Cela, S.; Ho, S.; Rodríguez-González, B.; Correa-Duarte, M. A.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Kotov, N. A. Loading of exponentially grown LBL films with silver nanoparticles and their application to generalized SERS detection. Angew. Chem., Int. Ed. 2009, 48, 5326–5329.

    Article  CAS  Google Scholar 

  21. Xie, Y. F.; Wang, X.; Han, X. X.; Xue, X. X.; Ji, W.; Qi, Z. H.; Liu, J. Q.; Zhao, B.; Ozaki, Y. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Analyst 2010, 135, 1389–1394.

    Article  CAS  Google Scholar 

  22. dos Santos, D. P.; Temperini, M. L. A.; Brolo, A. G. Mapping the energy distribution of SERRS hot spots from anti-stokes to stokes intensity ratios. J. Am. Chem. Soc. 2012, 134, 13492–13500.

    Article  Google Scholar 

  23. Liu, Y. S.; Luo, F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res. 2020, 13, 138–144.

    Article  Google Scholar 

  24. Shao, Q.; Que, R. H.; Shao, M. W.; Cheng, L.; Lee, S. T. Copper nanoparticles grafted on a silicon wafer and their excellent surface-enhanced Raman scattering. Adv. Funct. Mater. 2012, 22, 2067–2070.

    Article  CAS  Google Scholar 

  25. Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p′-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677–10682.

    Article  CAS  Google Scholar 

  26. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

    Article  CAS  Google Scholar 

  27. Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.

    Article  CAS  Google Scholar 

  28. Lin, W. C.; Liao, L. S.; Chen, Y. H.; Chang, H. C.; Tsai, D. P.; Chiang, H. P. Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 2011, 6, 201–206.

    Article  CAS  Google Scholar 

  29. Barbosa, S.; Agrawal, A.; Rodríguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Kornowski, A.; Weller, H.; Liz-Marzán, L. M. Tuning size and sensing properties in colloidal gold nanostars. Langmuir 2010, 26, 14943–14950.

    Article  CAS  Google Scholar 

  30. Marshall, A. R. L.; Stokes, J.; Viscomi, F. N.; Proctor, J. E.; Gierschner, J.; Bouillard, J. S. G.; Adawi, A. M. Determining molecular orientation via single molecule SERS in a plasmonic nano-gap. Nanoscale 2017, 9, 17415–17421.

    Article  CAS  Google Scholar 

  31. Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460–10463.

    Article  CAS  Google Scholar 

  32. Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452–460.

    Article  CAS  Google Scholar 

  33. Zhu, C. H.; Meng, G. W.; Huang, Q.; Wang, X. J.; Qian, Y. W.; Hu, X. Y.; Tang, H. B.; Wu, N. Q. ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates. Nano Res. 2015, 8, 957–966.

    Article  CAS  Google Scholar 

  34. Pham, X. H.; Hahm, E.; Kim, T. H.; Kim, H. M.; Lee, S. H.; Lee, S. C.; Kang, H.; Lee, H. Y.; Jeong, D. H.; Choi, H. S. et al. Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res. 2020, 13, 3338–3346.

    Article  CAS  Google Scholar 

  35. Weber, M. L.; Willets, K. A. Correlated super-resolution optical and structural studies of surface-enhanced Raman scattering hot spots in silver colloid aggregates. J. Phys. Chem. Lett. 2011, 2, 1766–1770.

    Article  CAS  Google Scholar 

  36. Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 2014, 5, 3448.

    Article  Google Scholar 

  37. Kumar, J.; Thomas, K. G. Surface-enhanced raman spectroscopy: Investigations at the nanorod edges and dimer junctions. J. Phys. Chem. Lett. 2011, 2, 610–615.

    Article  CAS  Google Scholar 

  38. Fan, Q. K.; Liu, T. Z.; Li, H. S.; Zhang, S. M.; Liu, K.; Gao, C. B. Gold/oxide heterostructured nanoparticles for enhanced SERS sensitivity and reproducibility. Rare Met. 2020, 39, 834–840.

    Article  CAS  Google Scholar 

  39. Rodríguez-Lorenzo, L.; Álvarez-Puebla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; de Abajo, F. J. G. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618.

    Article  Google Scholar 

  40. Huang, Z. L.; Meng, G. W.; Hu, X. Y.; Pan, Q. J.; Huo, D. X.; Zhou, H. J.; Ke, Y.; Wu, N. Q. Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering. Nano Res. 2019, 12, 449–455.

    Article  CAS  Google Scholar 

  41. Shiohara, A.; Novikov, S. M.; Solís, D. M.; Taboada, J. M.; Obelleiro, F.; Liz-Marzán, L. M. Plasmon modes and hot spots in gold nanostarsatellite clusters. J. Phys. Chem. C 2015, 119, 10836–10843.

    Article  CAS  Google Scholar 

  42. Taylor, R. W.; Coulston, R. J.; Biedermann, F.; Mahajan, S.; Baumberg, J. J.; Scherman, O. A. In situ SERS monitoring of photochemistry within a nanojunction reactor. Nano Lett. 2013, 13, 5985–5990.

    Article  CAS  Google Scholar 

  43. Zhan, P. F.; Wen, T.; Wang, Z. G.; He, Y. B.; Shi, J.; Wang, T.; Liu, X. F.; Lu, G. W.; Ding, B. Q. DNA origami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced raman scattering. Angew. Chem., Int. Ed. 2018, 57, 2846–2850.

    Article  CAS  Google Scholar 

  44. Chen, H. Y.; Lin, M. H.; Wang, C. Y.; Chang, Y. M.; Gwo, S. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc. 2015, 137, 13698–13705.

    Article  CAS  Google Scholar 

  45. Choi, H. K.; Park, W. H.; Park, C. G.; Shin, H. H.; Lee, K. S.; Kim, Z. H. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J. Am. Chem. Soc. 2016, 138, 4673–4684.

    Article  CAS  Google Scholar 

  46. Kim, N. H.; Hwang, W.; Baek, K.; Rohman, M. R.; Kim, J.; Kim, H. W.; Mun, J.; Lee, S. Y.; Yun, G.; Murray, J. et al. Smart SERS hot spots: Single molecules can Be positioned in a plasmonic nanojunction using host-guest chemistry. J. Am. Chem. Soc. 2018, 140, 4705–4711.

    Article  CAS  Google Scholar 

  47. Zhang, Z. L.; Deckert-Gaudig, T.; Singh, P.; Deckert, V. Single molecule level plasmonic catalysis—A dilution study of p-nitrothiophenol on gold dimers. Chem. Commun. 2015, 51, 3069–3072.

    Article  CAS  Google Scholar 

  48. Jung, D.; Jeon, K.; Yeo, J.; Hussain, S.; Pang, Y. Multifaceted adsorption of α-cyano-4-hydroxycinnamic acid on silver colloidal and island surfaces. Appl. Surf. Sci. 2017, 425, 63–68.

    Article  CAS  Google Scholar 

  49. Lu, G.; Shrestha, B.; Haes, A. J. Importance of tilt angles of adsorbed aromatic molecules on nanoparticle rattle SERS substrates. J. Phys. Chem. C 2016, 120, 20759–20767.

    Article  CAS  Google Scholar 

  50. Hackler, R. A.; McAnally, M. O.; Schatz, G. C.; Stair, P. C.; Van Duyne, R. P. Identification of dimeric methylalumina surface species during atomic layer deposition using Operando surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 2017, 139, 2456–2463.

    Article  CAS  Google Scholar 

  51. Hu, J.; Tanabe, M.; Sato, J.; Uosaki, K.; Ikeda, K. Effects of atomic geometry and electronic structure of platinum surfaces on molecular adsorbates studied by gap-mode SERS. J. Am. Chem. Soc. 2014, 136, 10299–10307.

    Article  CAS  Google Scholar 

  52. Carnegie, C.; Griffiths, J.; de Nijs, B.; Readman, C.; Chikkaraddy, R.; Deacon, W. M.; Zhang, Y.; Szabó, I.; Rosta, E.; Aizpurua, J. et al. Room-temperature optical picocavities below 1 nm3 accessing singleatom geometries. J. Phys. Chem. Lett. 2018, 9, 7146–7151.

    Article  CAS  Google Scholar 

  53. Beqa, L.; Fan, Z.; Singh, A. K.; Senapati, D.; Ray, P. C. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl. Mater. Interfaces 2011, 3, 3316–3324.

    Article  CAS  Google Scholar 

  54. Chen, Y. C.; Young, R. J.; Macpherson, J. V.; Wilson, N. R. Singlewalled carbon nanotube networks decorated with silver nanoparticles: A novel graded SERS substrate. J. Phys. Chem. C 2007, 111, 16167–16173.

    Article  CAS  Google Scholar 

  55. Chu, H. B.; Wang, J. Y.; Ding, L.; Yuan, D. N.; Zhang, Y.; Liu, J.; Li, Y. Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2009, 131, 14310–14316.

    Article  CAS  Google Scholar 

  56. Wang, X. J.; Wang, C.; Cheng, L.; Lee, S. T.; Liu, Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J. Am. Chem. Soc. 2012, 134, 7414–7422.

    Article  CAS  Google Scholar 

  57. Chu, H. B.; Cui, R. L.; Wang, J. Y.; Yang, J.; Li, Y. Visualization of individual single-walled carbon nanotubes under an optical microscope as a result of decoration with gold nanoparticles. Carbon 2011, 49, 1182–1188.

    Article  CAS  Google Scholar 

  58. Lyu, M.; Meany, B.; Yang, J.; Li, Y.; Zheng, M. Toward complete resolution of DNA/carbon nanotube hybrids by aqueous two-phase systems. J. Am. Chem. Soc. 2019, 141, 20177–20186.

    Article  Google Scholar 

  59. Yanagi, K.; Iakoubovskii, K.; Matsui, H.; Matsuzaki, H.; Okamoto, H.; Miyata, Y.; Maniwa, Y.; Kazaoui, S.; Minami, N.; Kataura, H. Photosensitive function of encapsulated dye in carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 4992–4997.

    Article  CAS  Google Scholar 

  60. Nakanishi, R.; Satoh, J.; Katoh, K.; Zhang, H. T.; Breedlove, B. K.; Nishijima, M.; Nakanishi, Y.; Omachi, H.; Shinohara, H.; Yamashita, M. DySc2N@C80 single-molecule magnetic metallofullerene encapsulated in a single-walled carbon nanotube. J. Am. Chem. Soc. 2018, 140, 10955–10959.

    Article  CAS  Google Scholar 

  61. Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

    Article  CAS  Google Scholar 

  62. Ouyang, J. Y.; Ding, J. F.; Lefebvre, J.; Li, Z.; Guo, C.; Kell, A. J.; Malenfant, P. R. L. Sorting of semiconducting single-walled carbon nanotubes in polar solvents with an amphiphilic conjugated polymer provides general guidelines for enrichment. ACS Nano 2018, 12, 1910–1919.

    Article  CAS  Google Scholar 

  63. Heeg, S.; Oikonomou, A.; Fernandez-Garcia, R.; Lehmann, C.; Maier, S. A.; Vijayaraghavan, A.; Reich, S. Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities. Nano Lett. 2014, 14, 1762–1768.

    Article  CAS  Google Scholar 

  64. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

    Article  Google Scholar 

  65. Cui, R. L.; Zhao, X. L.; Li, R. M.; Liu, Y.; Luo, D.; Yang, F.; Li, Y. Preparation of horizontally aligned single-walled carbon nanotubes with floating catalyst. Sci. China Chem. 2017, 60, 516–520.

    Article  CAS  Google Scholar 

  66. Zhang, D. Q.; Yang, J.; Li, M. H.; Li, Y. (n,m) assignments of metallic single-walled carbon nanotubes by Raman spectroscopy: The importance of electronic Raman scattering. ACS Nano 2016, 10, 10789–10797.

    Article  CAS  Google Scholar 

  67. Huang, S. M.; Woodson, M.; Smalley, R.; Liu, J. Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett. 2004, 4, 1025–1028.

    Article  CAS  Google Scholar 

  68. Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806–13812.

    Article  CAS  Google Scholar 

  69. Sun, Y. H.; Liu, K.; Miao, J.; Wang, Z. Y.; Tian, B. Z.; Zhang, L. N.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett. 2010, 10, 1747–1753.

    Article  CAS  Google Scholar 

  70. Suh, J. S.; Moskovits, M. Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. J. Am. Chem. Soc. 1986, 108, 4711–4718.

    Article  CAS  Google Scholar 

  71. Madzharova, F.; Heiner, Z.; Gühlke, M.; Kneipp, J. Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine, and uracil. J. Phys. Chem. C 2016, 120, 15415–15423.

    Article  CAS  Google Scholar 

  72. Xiao, G. N.; Man, S. Q. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem. Phys. Lett. 2007, 447, 305–309.

    Article  CAS  Google Scholar 

  73. Dieringer, J. A.; Lettan, R. B.; Scheidt, K. A.; Van Duyne, R. P. A frequency domain existence proof of single-molecule surface-enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2007, 129, 16249–16256.

    Article  CAS  Google Scholar 

  74. Etchegoin, P. G.; Le Ru, E. C.; Meyer, M. Evidence of natural isotopic distribution from single-molecule SERS. J. Am. Chem. Soc. 2009, 131, 2713–2716.

    Article  CAS  Google Scholar 

  75. Chen, C.; Li, Y.; Kerman, S.; Neutens, P.; Willems, K.; Cornelissen, S.; Lagae, L.; Stakenborg, T.; Van Dorpe, P. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 2018, 9, 1733.

    Article  Google Scholar 

  76. Wang, D. X.; Zhu, W. Q.; Best, M. D.; Camden, J. P.; Crozier, K. B. Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett. 2013, 13, 2194–2198.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National key R&D Program of China (No. 2016YFA0201904), the National Natural Science Foundation of China (Nos. 21873008 and 21631002), Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001) and Shenzhen Basic Research Project (No. JCYJ20170817113121505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Yang or Yan Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Zhang, D., Li, H. et al. Single-walled carbon nanotube based SERS substrate with single molecule sensitivity. Nano Res. 15, 694–700 (2022). https://doi.org/10.1007/s12274-021-3549-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3549-y

Keywords

Navigation