Skip to main content
Log in

Interplay between invasive single atom Pt and native oxygen vacancy in rutile TiO2(110) surface: A theoretical study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxygen vacancy (Ov) as well as Ov migration in metal oxide are of great importance in structural evolution of active center in single-atom catalysts (SACs). Here, the interplay between invasive single Pt atom and native Ov in SA-Pt/rutile TiO2(110) surface, as well as their synergetic effect on water dissociation are investigated by density functional theory (DFT) calculations. We show that importing Pt atom as Pt-ads, Pt2c, Pt5c and Pt6c modes could decelerate the Ov migration effectively, especially in Pt6c mode. Under oxygen-rich conditions, Pt6c substitution could make oxygen Ov formation easier, but migration harder. On Pt6c/Ti1−yO2−x1(110) surface, as a bimetal center, Pt4c-Ti5c concave could not make water dissociation process easier; however, the O2c closed to Pt become a good proton acceptor to make water dissociation on Ti5c-O2c more convenient with the aid of topmost Ti5c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.n

    Article  CAS  Google Scholar 

  2. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  CAS  Google Scholar 

  3. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  4. Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

    Article  CAS  Google Scholar 

  5. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-3244-4.

  6. Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater., in press, DOI: https://doi.org/10.1007/s40843-020-1579-7.

  7. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  8. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  Google Scholar 

  9. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  10. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  11. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2170006.

    Article  Google Scholar 

  12. Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

    Article  Google Scholar 

  13. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  14. Sykes, E. C. H.; Christopher, P. Recent advances in single-atom catalysts and single-atom alloys: Opportunities for exploring the uncharted phase space in-between. Curr. Opin. Chem. Eng. 2020, 29, 67–73.

    Article  Google Scholar 

  15. Resasco, J.; DeRita, L.; Dai, S.; Chada, J. P.; Xu, M. J.; Yan, X. X.; Finzel, J.; Hanukovich, S.; Hoffman, A. S.; Graham, G. W. et al. Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: The case of Pt/CeO2. J. Am. Chem. Soc. 2020, 142, 169–184.

    Article  CAS  Google Scholar 

  16. Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

    Article  CAS  Google Scholar 

  17. Lu, Y. B.; Wang, J. M.; Yu, L.; Kovarik, L.; Zhang, X. W.; Hoffman, A. S.; Gallo, A.; Bare, S. R.; Sokaras, D.; Kroll, T. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2019, 2, 149–156.

    Article  CAS  Google Scholar 

  18. Humphrey, N.; Bac, S.; Sharada, S. M. Ab initio molecular dynamics reveals new metal-binding sites in atomically dispersed Pt1/TiO2 catalysts. J. Phys. Chem. C 2020, 124, 24187–24195.

    Article  CAS  Google Scholar 

  19. Wang, Y. G.; Mei, D. H.; Glezakou, V. A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.

    Article  CAS  Google Scholar 

  20. Daelman, N.; Capdevila-Cortada, M.; Lopez, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019, 18, 1215–1221.

    Article  CAS  Google Scholar 

  21. DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746–751.

    Article  CAS  Google Scholar 

  22. Tang, Y.; Asokan, C.; Xu, M. J.; Graham, G. W.; Pan, X. Q.; Christopher, P.; Li, J.; Sautet, P. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 2019, 10, 4488.

    Article  Google Scholar 

  23. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

    Article  CAS  Google Scholar 

  24. Hoang, S.; Guo, Y. B.; Binder, A. J.; Tang, W. X.; Wang, S.; Liu, J. Y.; Tran, H.; Lu, X. X.; Wang, Y.; Ding, Y. et al. Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 2020, 11, 1062.

    Article  CAS  Google Scholar 

  25. Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat Catal. 2019, 2, 873–881.

    Article  CAS  Google Scholar 

  26. Yu, F.; Wang, C. H.; Ma, H.; Song, M.; Li, D. S.; Li, Y. Y.; Li, S. M.; Zhang, X. T.; Liu, Y. C. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2. Nanoscale 2020, 12, 7000–7010.

    Article  CAS  Google Scholar 

  27. Yang, M.; Liu, J. L.; Lee, S.; Zugic, B.; Huang, J.; Allard, L. F.; Flytzani-Stephanopoulos, M. A common single-site Pt(II)-O(OH)x-species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 2015, 137, 3470–3473.

    Article  CAS  Google Scholar 

  28. Ammal, S. C.; Heyden, A. Understanding the nature and activity of supported platinum catalysts for the water-gas shift reaction: From metallic nanoclusters to alkali-stabilized single-atom cations. ACS Catal. 2019, 9, 7721–7740.

    Article  CAS  Google Scholar 

  29. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

    Article  CAS  Google Scholar 

  30. Jones, J.; Xiong, H.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  31. Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G.; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.

    Article  CAS  Google Scholar 

  32. Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčiková, K.; Mysliveček, J. et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem., Int. Ed. 2014, 53, 10525–10530.

    Article  CAS  Google Scholar 

  33. Kwak, J. H.; Hu, J.; Mei, D.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.

    Article  CAS  Google Scholar 

  34. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.

    Article  CAS  Google Scholar 

  35. Schaub, R.; Thostrup, P.; Lopez, N.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Besenbacher, F. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110). Phys. Rev. Lett. 2001, 87, 266104.

    Article  CAS  Google Scholar 

  36. Brookes, I. M.; Muryn, C. A.; Thornton, G. Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 2001, 87, 266103.

    Article  CAS  Google Scholar 

  37. He, Y. B.; Dulub, O.; Cheng, H. Z.; Selloni, A.; Diebold, U. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 2009, 102, 106105.

    Article  Google Scholar 

  38. Cheng, H. Z.; Selloni, A. Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B 2009, 79, 092101.

    Article  Google Scholar 

  39. Scheiber, P.; Fidler, M.; Dulub, O.; Schmid, M.; Diebold, U.; Hou, W. Y.; Aschauer, U.; Selloni, A. (Sub)surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Phys. Rev. Lett. 2012, 109, 136103.

    Article  Google Scholar 

  40. Jin, C.; Dai, Y.; Wei, W.; Ma, X. C.; Li, M. M.; Huang, B. B. Effects of single metal atom (Pt, Pd, Rh, and Ru) adsorption on the photocatalytic properties of anatase TiO2. Appl. Surf. Sci. 2017, 426, 639–646.

    Article  CAS  Google Scholar 

  41. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

    Article  CAS  Google Scholar 

  42. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

    Article  CAS  Google Scholar 

  43. Wang, X. Y.; Zhang, L.; Bu, Y. X.; Sun, W. M. Interplay between invasive single atom Pt and native oxygen vacancy in anatase TiO2(101) surface: A theoretical study. Appl. Surf. Sci. 2021, 540, 148357.

    Article  CAS  Google Scholar 

  44. Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

    Article  Google Scholar 

  45. Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125.

    Article  Google Scholar 

  46. Li, Y. D.; Gao, Y. Interplay between water and TiO2 anatase (101) surface with subsurface oxygen vacancy. Phys. Rev. Lett. 2014, 112, 206101.

    Article  Google Scholar 

  47. Cromer, D. T.; Herrington, K. The structures of anatase and rutile. J. Am. Chem. Soc. 1955, 77, 4708–4709.

    Article  CAS  Google Scholar 

  48. Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258.

    Article  CAS  Google Scholar 

  49. Luo, Z. B.; Wang, Z. J.; Li, J.; Yang, K.; Zhou, G. N-promoted Ru1/TiO2 single-atom catalysts for photocatalytic water splitting for hydrogen production: A density functional theory study. Phys. Chem. Chem. Phys. 2020, 22, 11392–11399.

    Article  CAS  Google Scholar 

  50. Prandini, G.; Marrazzo, A.; Castelli, I. E.; Mounet, N.; Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 2018, 4, 72.

    Article  Google Scholar 

  51. Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A. et al. Reproducibility in density functional theory calculations of solids. Science 2016, 351, aad3000.

    Article  Google Scholar 

  52. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum Espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

    Google Scholar 

  53. Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with Quantum Espresso. J. Phys.: Condens. Matter 2017, 29, 465901.

    CAS  Google Scholar 

  54. Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 2005, 71, 035105.

    Article  Google Scholar 

  55. Deskins, N. A.; Rousseau, R.; Dupuis, M. Distribution of Ti3+ surface sites in reduced TiO2. J. Phys. Chem. C 2011, 115, 7562–7572.

    Article  CAS  Google Scholar 

  56. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. T. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506.

    Article  CAS  Google Scholar 

  57. Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Article  Google Scholar 

  58. Sun, W. M.; Di Felice, R. Nature of the interaction between natural and size-expanded guanine with gold clusters: A density functional theory study. J. Phys. Chem. C 2012, 116, 24954–24961.

    Article  CAS  Google Scholar 

  59. Matsunaga, K.; Chang, T. Y.; Ishikawa, R.; Dong, Q.; Toyoura, K.; Nakamura, A.; Ikuhara, Y.; Shibata, N. Adsorption sites of single noble metal atoms on the rutile TiO2(110) surface influenced by different surface oxygen vacancies. J. Phys.: Condens. Matter 2016, 28, 175002.

    Google Scholar 

  60. Zhang, Z. R.; Ge, Q. F.; Li, S. C.; Kay, B. D.; White, J. M.; Dohnálek, Z. Imaging intrinsic diffusion of bridge-bonded oxygen vacancies on TiO2(110). Phys. Rev. Lett. 2007, 99, 126105.

    Article  Google Scholar 

  61. Helali, Z.; Markovits, A.; Minot, C.; Abderrabba, M. Metal atom adsorption on a defective TiO2−x, support. Chem. Phys. Lett. 2014, 594, 23–29.

    Article  CAS  Google Scholar 

  62. Tauster, S. J. Strong metal-support interactions. Acc. Chem. Res. 1987, 20, 389–394.

    Article  CAS  Google Scholar 

  63. Hwang, J.; Noh, S. H.; Han, B. Design of active bifunctional electro-catalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552.

    Article  CAS  Google Scholar 

  64. Han, B. C.; Van der Ven, A.; Ceder, G.; Hwang, B. J. Surface segregation and ordering of alloy surfaces in the presence of adsorbates. Phys. Rev. B 2005, 72, 205409.

    Article  Google Scholar 

  65. Noh, S. H.; Kwon, C.; Hwang, J.; Ohsaka, T.; Kim, B. J.; Kim, T. Y.; Yoon, Y. G.; Chen, Z. W.; Seo, M. H.; Han, B. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications. Nanoscale 2017, 9, 7373–7379.

    Article  CAS  Google Scholar 

  66. Chen, X.; McDonald, A. R. Functionalization of two-dimensional transition-metal dichalcogenides. Adv. Mater. 2016, 28, 5738–5746.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the 2115 Talent Development Program of China Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, L., Bu, Y. et al. Interplay between invasive single atom Pt and native oxygen vacancy in rutile TiO2(110) surface: A theoretical study. Nano Res. 15, 669–676 (2022). https://doi.org/10.1007/s12274-021-3542-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3542-5

Keywords

Navigation