Skip to main content
Log in

The influence of the oxygen vacancies on the Pt/TiO2 single-atom catalyst—a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The titanium dioxide (TiO2) surface is suitable as a substrate for single-atom catalysts (SACs) for oxygen reduction reaction (ORR). As a common defect on TiO2, oxygen vacancies may have a significant impact on the adsorption and activity of the adatoms. This work aims to investigate whether titanium dioxide containing surface oxygen vacancies is more suitable as a base material for SACs. This paper calculates the changes in the adsorption energy of the Pt atom and the energy of the d-band center on the perfect surface and the surface containing oxygen vacancies. Concerning the perfect surface, the surface containing oxygen vacancies fixes the Pt atom more firmly and increases the center energy of the d-band of Pt, thereby improving the performance of the Pt atom as SACs. Consequently, the (110) surface of rutile TiO2 with oxygen vacancies may be the best substrate for SACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data can be requested from the corresponding author.

References

  1. Hammer B, Nørskov JK (1995) Nature 376:238

    Article  CAS  Google Scholar 

  2. Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141

    Article  CAS  Google Scholar 

  3. Hammer B (2006) Top Catal 37:3

    Article  CAS  Google Scholar 

  4. Hammer B, Nrskov JK (2000) Theoretical surface science and catalysis—calculations and concepts[J]. Adv Catal 45(45):71–129

    CAS  Google Scholar 

  5. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Angew Chem Int Ed 45:2897

    Article  CAS  Google Scholar 

  6. Lu C, Lee IC, Masel RI, Wieckowski A, Rice C (2002) J Phys Chem A 106:3084

    Article  CAS  Google Scholar 

  7. Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst[J]. Chemosphere 48(10):1103–1111

    Article  CAS  Google Scholar 

  8. Mirshekari GR, Rice CA (2018) Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment[J]. J Power Sources 396:606–614

    Article  CAS  Google Scholar 

  9. Humphrey N, Bac S, Sharada SM (2020) Ab Initio Molecular Dynamics Reveals New Active Sites in Atomically Dispersed Pt1/TiO2 Catalysts[J]. J Phys Chem C 124(44):24187–24195

    Article  CAS  Google Scholar 

  10. Wang T, Qiu S, Dai Z, Hocking R, Sun C (2020) Appl Surf Sci 533:147362

    Article  CAS  Google Scholar 

  11. Wang X, Zhang L, Bu Y et al (2021) Interplay between invasive single atom Pt and native oxygen vacancy in anatase TiO2 (1 0 1) surface: A theoretical study[J]. Appl Surf Sci 540:148357

  12. Wei T, Zhu Y, Wu Y, An X, Liu L (2019) Effect of single-atom cocatalysts on the activity of faceted TiO2 photocatalysts. Langmuir 35:391–397

    Article  CAS  Google Scholar 

  13. Sun T, Wang Y, Zhang H, Liu P, Zhao H (2015) Adsorption and oxidation of oxalic acid on Anatase TiO2 (001) surface: A density functional theory study. J Colloid Interf Sci 454:180–186

    Article  CAS  Google Scholar 

  14. Nong S, Dong W, Yin J, Dong B, Lu Y, Yuan X, Wang X, Bu K, Chen M, Jiang S, Liu L, Sui M, Huang F (2018) Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 140:5719–5727

    Article  CAS  Google Scholar 

  15. Liu C, Li Q, Wu C, Zhang J, Jin Y, MacFarlane DR, Sun C (2019) Single-boron catalysts for nitrogen reduction reaction. J Am Chem Soc 141:2884–2888

    Article  CAS  Google Scholar 

  16. Hammer B, Nørskov JK (2000) Catalysis-calculation and concepts. Adv Catal 45:71–129

    CAS  Google Scholar 

  17. Zheng M, Yang J, Fan W et al (2021) Oxygen vacancy and nitrogen doping collaboratively boost performance and stability of TiO2-supported Pd catalysts for CO 2 photoreduction: a DFT study[J]. Phys Chem Chem Phys 23(43):24801–24813

    Article  CAS  Google Scholar 

  18. Tao J, Cuan Q, Gong X-Q, Batzill M (2012) Diffusion and reaction of hydrogen on rutile TiO2 (011)-2×1: the role of surface structure. J Phys Chem C 116(38):20438–20446

    Article  CAS  Google Scholar 

  19. Zhao Z, Jiang Q, Wang Q et al (2021) Effect of rutile content on the catalytic performance of Ru/TiO2 catalyst for low-temperature CO2 methanation[J]. ACS Sustain Chem Eng 9(42):14288–14296

    Article  CAS  Google Scholar 

  20. Aiura Y, Nishihara Y, Haruyama Y et al (1994) Effects of surface oxygen vacancies on electronic states of TiO2 (110), TiO2 (001) and SrTiO3 (001) surfaces[J]. Physica B 194:1215–1216

    Article  Google Scholar 

  21. Gong X-Q, Selloni A, Dulub O, Jacobson P, Diebold U (2008) Small Au and Pt clusters at the anatase TiO2 (101) surface: behavior at terraces, steps, and surface oxygen vacancies. J Am Chem Soc 130(1):370–381

    Article  CAS  Google Scholar 

  22. Cheng H, Selloni A (2009) Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile [J]. Phys Rev B 79(9):092101

    Article  Google Scholar 

  23. Shu DJ, Ge ST, Wang M et al (2008) Interplay between external strain and oxygen vacancies on a rutile TiO 2 (110) surface[J]. Phys Rev Lett 101(11):116102

    Article  Google Scholar 

  24. Petrik NG, Kimmel GA (2015) Reaction kinetics of water molecules with oxygen vacancies on rutile TiO2 (110) [J]. J Phys Chem C 119(40):23059–23067

    Article  CAS  Google Scholar 

  25. Philipsen PHT, Baerends EJ (1996) Phys Rev B Condens Matter 54(8):5326–5333

    Article  CAS  Google Scholar 

Download references

Funding

National Key Research and Development Program of China (No. 2018YFA0703702).

National Natural Science Foundation of China (No. 11874084).

Author information

Authors and Affiliations

Authors

Contributions

Yongkang Zhang: data curation, formal analysis, writing—original draft, software, writing—review and editing.

Yuhang Wang: formal analysis, writing—review and editing.

Kaibin Su: software, writing—review and editing.

Fengping Wang: funding acquisition, supervision.

Corresponding author

Correspondence to Fengping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 770 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Y., Su, K. et al. The influence of the oxygen vacancies on the Pt/TiO2 single-atom catalyst—a DFT study. J Mol Model 28, 175 (2022). https://doi.org/10.1007/s00894-022-05123-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05123-w

Keywords

Navigation