Skip to main content
Log in

Atomic-resolution characterization on the structure of strontium doped barium titanate nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ferroelectric barium titanate nanoparticles (BTO NPs) may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors. While increasing experimental and theoretical understandings on the structure of BTO and doped BTO have been developed over the past decade, the majority of the investigation was carried out in thin-film materials; therefore, the doping effect on nanoparticles remains unclear. Especially, doping-induced local composition and structure fluctuation across single nanoparticles have yet to be unveiled. In this work, we use electron microscopy-based techniques including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), integrated differential phase contrast (iDPC)-STEM, and energy dispersive X-ray spectroscopy (EDX) mapping to reveal atomically resolved chemical and crystal structure of BTO and strontium doped BTO nanoparticles. Powder X-ray diffraction (PXRD) results indicate that the increasing strontium doping causes a structural transition from tetragonal to cubic phase, but the microscopic data validate substantial compositional and microstructural inhomogeneities in strontium doped BTO nanoparticles. Our work provides new insights into the structure of doped BTO NPs and will facilitate the materials design for next-generation high-density nano-dielectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou, K. L.; Dan, Y.; Xu, H. J.; Zhang, Q. F.; Lu, Y. M.; Huang, H. T.; He, Y. B. Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 2019, 113, 190–201.

    Article  CAS  Google Scholar 

  2. Pan, M. J.; Randall, C. A. A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 2019, 26, 44–50.

    Article  Google Scholar 

  3. Kumari, A.; Dasgupta Ghosh, B. Effect of strontium doping on structural and dielectric behaviour of barium titanate nanoceramics. Adv. Appl. Ceram. 2019, 117, 427–435.

    Article  Google Scholar 

  4. Zaman, T.; Islam, K.; Rahman, A.; Hussain, A.; Matin, A.; Rahman, S. Mono and co-substitution of Sr2+ and Ca2+ on the structural, electrical and optical properties of barium titanate ceramics. Ceram. Int. 2019, 45, 10154–10162.

    Article  CAS  Google Scholar 

  5. Jamaluddin, A.; Suwarni; Supriyanto, A.; Iriani, Y. Properties of strontium doped barium titanate powder prepared by solid state reaction. J. Phys. Conf. Ser. 2019, 776, 012052.

    Article  Google Scholar 

  6. Kim, S. D.; Hwang, G. T.; Song, K.; Jeong, C. K.; Park, K. I.; Jang, J.; Kim, K. H.; Ryu, J.; Choi, S. Y. Inverse size-dependence of piezoelectricity in single BaTiO3 nanoparticles. Nano Energy 2019, 58, 78–84.

    Article  CAS  Google Scholar 

  7. Bosch, E. G. T.; Lazić, I. Analysis of HR-STEM theory for thin specimen. Ultramicroscopy 2019, 156, 59–72.

    Article  Google Scholar 

  8. Shen, B. Y.; Chen, X.; Shen, K.; Xiong, H.; Wei, F. Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nat. Commun. 2019, 11, 2692.

    Article  Google Scholar 

  9. Dekkers, N. H.; De Lang, H. Differential phase contrast in a STEM. Optik 2019, 41, 452–456.

    Google Scholar 

  10. Carlsson, A.; Alexandrou, I.; Yücelen, E.; Bosch, E. G. T.; Lazić, I. Low dose imaging using simultaneous iDPC- and ADF-STEM for beam sensitive crystalline structures. Microsc. Microanal. 2019, 24, 122–123.

    Article  Google Scholar 

  11. Shen, B. Y.; Chen, X.; Cai, D. L.; Xiong, H.; Liu, X.; Meng, C. G.; Han, Y.; Wei, F. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks. Adv. Mater. 2019, 32, 1906103.

    Article  Google Scholar 

  12. Liu, L. M.; Wang, N.; Zhu, C. Z.; Liu, X. N.; Zhu, Y. H.; Guo, P.; Alfilfil, L.; Dong, X. L.; Zhang, D. L.; Han, Y. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem., Int. Ed. 2019, 59, 819–825.

    Article  Google Scholar 

  13. Kondo, S.; Ishihara, A.; Tochigi, E.; Shibata, N.; Ikuhara, Y. Direct observation of atomic-scale fracture path within ceramic grain boundary core. Nat. Commun. 2019, 10, 2112.

    Article  Google Scholar 

  14. Wu, Y. J.; Huang, Y. H.; Wang, N.; Li, J.; Fu, M. S.; Chen, X. M. Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J. Eur. Ceram. Soc. 2019, 37, 2099–2104.

    Article  Google Scholar 

  15. Rheinheimer, W.; Bäurer, M.; Chien, H.; Rohrer, G. S.; Handwerker, C. A.; Blendell, J. E.; Hoffmann, M. J. The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution. Acta Mater. 2019, 82, 32–40.

    Article  Google Scholar 

  16. Campanini, M.; Trassin, M.; Ederer, C.; Erni, R.; Rossell, M. D. Buried in-plane ferroelectric domains in Fe-doped single-crystalline aurivillius thin films. ACS Appl. Electron. Mater. 2019, 1, 1019–1028.

    Article  CAS  Google Scholar 

  17. Barzilay, M.; Qiu, T.; Rappe, A. M.; Ivry, Y. Epitaxial TiOx surface in ferroelectric BaTiO3: Native structure and dynamic patterning at the atomic scale. Adv. Funct. Mater. 2019, 30, 1902549.

    Article  Google Scholar 

  18. Smith, M. B.; Page, K.; Siegrist, T.; Redmond, P. L.; Walter, E. C.; Seshadri, R.; Brus, L. E.; Steigerwald, M. L. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 2019, 130, 6955–6963.

    Article  Google Scholar 

  19. Estandía, S.; Sánchez, F.; Chisholm, M. F.; Gázquez, J. Rotational polarization nanotopologies in BaTiO3/SrTiO3 superlattices. Nanoscale 2019, 11, 21275–21283.

    Article  Google Scholar 

  20. Yadav, A. K.; Nelson, C. T.; Hsu, S. L.; Hong, Z.; Clarkson, J. D.; Schlepütz, C. M.; Damodaran, A. R.; Shafer, P.; Arenholz, E.; Dedon, L. R. et al. Observation of polar vortices in oxide superlattices. Nature 2019, 530, 198–201.

    Article  Google Scholar 

  21. Polking, M. J.; Han, M. G.; Yourdkhani, A.; Petkov, V.; Kisielowski, C. F.; Volkov, V. V.; Zhu, Y. M.; Caruntu, G.; Alivisatos, A. P.; Ramesh, R. Ferroelectric order in individual nanometre-scale crystals. Nat. Mater. 2019, 11, 700–709.

    Article  Google Scholar 

  22. MacArthur, K. E.; Brown, H. G.; Findlay, S. D.; Allen, L. J. Probing the effect of electron channelling on atomic resolution energy dispersive X-ray quantification. Ultramicroscopy 2019, 182, 264–275.

    Article  Google Scholar 

  23. Lazić, I.; Bosch, E. G. T.; Lazar, S. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 2019, 160, 265–280.

    Article  Google Scholar 

  24. Yücelen, E.; Lazić, I.; Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 2019, 8, 2676.

    Article  Google Scholar 

  25. Nord, M.; Vullum, P. E.; MacLaren, I.; Tybell, T.; Holmestad, R. Atomap: A new software tool for the automated analysis of atomic resolution images using two-dimensional gaussian fitting. Adv. Struct. Chem. Imaging 2019, 3, 9.

    Article  Google Scholar 

  26. Sun, Y. W.; Abid, A. Y.; Tan, C. B.; Ren, C. L.; Li, M. Q.; Li, N.; Chen, P.; Li, Y. H.; Zhang, J. M.; Zhong, X. L. et al. Subunit cell-level measurement of polarization in an individual polar vortex. Sci. Adv. 2019, 5, eaav4355.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21625304, 21872163, 21991153, 22072090, 21991153, and 21991150). L. C. acknowledges the support from the Ministry of Science and Technology (No. 2016YFA0200703). P. L. acknowledges the financial support from the Carlsberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoyu Jiang, Pei Liu, Xi Liu or Liwei Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Qi, J., Wu, D. et al. Atomic-resolution characterization on the structure of strontium doped barium titanate nanoparticles. Nano Res. 14, 4802–4807 (2021). https://doi.org/10.1007/s12274-021-3431-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3431-y

Keywords

Navigation