Skip to main content
Log in

Functional photonic structures for external interaction with flexible/wearable devices

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In addition to vital functions, more subsidiary functions are being expected from wearable devices. The wearable technology thus far has achieved the ability to maintain homeostasis by continuously monitoring physiological signals. The quality of life improves if, through further developments of wearable devices to detect, announce, and even control unperceptive or noxious signals from the environment. Soft materials based on photonic engineering can fulfil the abovementioned functions. Due to the flexibility and zero-power operation of such materials, they can be applied to conventional wearables without affecting existing functions. The achievements to freely tailoring a broad range of electromagnetic waves have encouraged the development of wearable systems for independent recognition/manipulation of light, pollution, chemicals, viruses and heat. Herein, the role that photonic engineering on a flexible platform plays in detecting or reacting to environmental changes is reviewed in terms of material selection, structural design, and regulation mechanisms from the ultraviolet to infrared spectral regions. Moreover, issues emerging with the evolution of the wearable technology, such as Joule heating, battery durability, and user privacy, and the potential solution strategies are discussed. This article provides a systematic review of current progress in wearable devices based on photonic structures as well as an overview of possible ubiquitous advances and their applications, providing diachronic perspectives and future outlook on the rapidly growing research field of wearable technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, S.; Zhang, Y. H.; Jia, L.; Mathewson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70–74.

    Article  CAS  Google Scholar 

  2. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  CAS  Google Scholar 

  3. Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404.

    Article  CAS  Google Scholar 

  4. Hong, Y. J.; Lee, H.; Kim, J.; Lee, M.; Choi, H. J.; Hyeon, T.; Kim, D. H. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv. Funct. Mater. 2018, 28, 1805754.

    Article  CAS  Google Scholar 

  5. Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Xu, G. W.; Wang, Q. W.; Liu, S. X.; Li, J.; Chen, C. J.; Yu, H. P.; Hu, L. B. A dynamic gel with reversible and tunable topological networks and performances. Matter 2020, 2, 390–403.

    Article  Google Scholar 

  6. Chen, S. M.; Gao, H. L.; Sun, X. H.; Ma, Z. Y.; Ma, T.; Xia, J.; Zhu, Y. B.; Zhao, R.; Yao, H. B.; Wu, H. A. et al. Superior biomimetic nacreous bulk nanocomposites by a multiscale soft-rigid dual-network interfacial design strategy. Matter 2019, 1, 412–427.

    Article  Google Scholar 

  7. Kang, J. H.; Son, D. H.; Wang, G. J. N.; Liu, Y. X.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 30, 1706846.

    Article  CAS  Google Scholar 

  8. Sung, S. H.; Kim, Y. S.; Joe, D. J.; Mun, B. H.; You, B. K.; Hahn, S. K.; Berggren, M.; Kim, D.; Lee, K. J. Flexible wireless powered drug delivery system for targeted administration on cerebral cortex. Nano Energy 2018, 51, 102–112.

    Article  CAS  Google Scholar 

  9. Jang, K. I.; Han, S. Y.; Xu, S.; Mathewson, K. E.; Zhang, Y. H.; Jeong, J. W.; Kim, G. T.; Webb, R. C.; Lee, J. W.; Dawidczyk, T. J. et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 2014, 5, 4779.

    Article  CAS  Google Scholar 

  10. Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, R. H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211–216.

    Article  CAS  Google Scholar 

  11. Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Trans. Med. 2016, 8, 366ra165.

    Article  CAS  Google Scholar 

  12. Kim, J.; Gutruf, P.; Chiarelli, A. M.; Heo, S. Y.; Cho, K.; Xie, Z. Q.; Banks, A.; Han, S.; Jang, K. I.; Lee, J. W. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 2017, 27, 1604373.

    Article  CAS  Google Scholar 

  13. Seshadri, D. R.; Li, R. T.; Voos, J. E.; Rowbottom, J. R.; Alfes, C. M.; Zorman, C. A.; Drummond, C. K. Wearable sensors for monitoring the physiological and biochemical profile of the athlete. npj Digit. Med. 2019, 2, 72.

    Article  Google Scholar 

  14. Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S. W.; Gaitonde, S.; Begtrup, G.; Katchman, B. A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 2019, 37, 407–419.

    Article  CAS  Google Scholar 

  15. Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924.

    Article  CAS  Google Scholar 

  16. Xu, X.; Chen, J.; Cai, S.; Long, Z.; Zhang, Y.; Su, L.; He, S.; Tang, C.; Liu, P.; Peng, H. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater. 2018, 30, 1803165.

    Article  CAS  Google Scholar 

  17. Jang, K. I.; Li, K.; Chung, H. U.; Xu, S.; Jung, H. N.; Yang, Y. Y.; Kwak, J. W.; Jung, H. H.; Song, J.; Yang, C. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 2017, 8, 15894.

    Article  CAS  Google Scholar 

  18. Yao, J. D.; Yang, G. W. Flexible and high-performance all-2D photodetector for wearable devices. Small 2018, 14, 1704524.

    Article  CAS  Google Scholar 

  19. Choi, J.; Bandodkar, A. J.; Reeder, J. T.; Ray, T. R.; Turnquist, A.; Kim, S. B.; Nyberg, N.; Hourlier-Fargette, A.; Model, J. B.; Aranyosi, A. J. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens. 2019, 4, 379–388.

    Article  CAS  Google Scholar 

  20. Cai, Z. Y.; Smith, N. L.; Zhang, J. T.; Asher, S. A. Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 2015, 87, 5013–5025.

    Article  CAS  Google Scholar 

  21. Yamamoto, Y.; Yamamoto, D.; Takada, M.; Naito, H.; Arie, T.; Akita, S.; Takei, K. Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch. Adv. Healthc. Mater. 2017, 6, 1700495.

    Article  CAS  Google Scholar 

  22. Tsuchiya, M.; Kurashina, Y.; Onoe, H. Eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent photonic colloidal crystal hydrogel microbeads. Sci. Rep. 2019, 9, 17059.

    Article  CAS  Google Scholar 

  23. Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 2015, 5, 11070.

    Article  CAS  Google Scholar 

  24. Shafiee, H.; Lidstone, E. A.; Jahangir, M.; Inci, F.; Hanhauser, E.; Henrich, T. J.; Kuritzkes, D. R.; Cunningham, B. T.; Demirci, U. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci. Rep. 2014, 4, 4116.

    Article  CAS  Google Scholar 

  25. Lee, N.; Wang, C.; Park, J. User-friendly point-of-care detection of influenza a (H1N1) virus using light guide in three-dimensional photonic crystal. RSC Adv. 2018, 8, 22991–22997.

    Article  CAS  Google Scholar 

  26. Wang, F.; Gopinath, S. C. B.; Lakshmipriya, T. Aptamer-antibody complementation on multiwalled carbon nanotube-gold transduced dielectrode surfaces to detect pandemic swine influenza virus. Int. J. Nanomed. 2019, 14, 8469–8481.

    Article  CAS  Google Scholar 

  27. Choe, A.; Yeom, J.; Shanker, R.; Kim, M. P.; Kang, S.; Ko, H. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 2018, 10, 912–922.

    Article  CAS  Google Scholar 

  28. Hong, S.; Gu, Y.; Seo, J. K.; Wang, J.; Liu, P.; Meng, Y. S.; Xu, S.; Chen, R. K. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 2019, 5, eaaw0536.

    Article  CAS  Google Scholar 

  29. Malakooti, M. H.; Kazem, N.; Yan, J. J.; Pan, C. F.; Markvicka, E. J.; Matyjaszewski, K.; Majidi, C. Liquid metal supercooling for low-temperature thermoelectric wearables. Adv. Funct. Mater. 2019, 29, 1906098.

    Article  CAS  Google Scholar 

  30. Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205–213.

    Article  CAS  Google Scholar 

  31. Hawkeye, M. M.; Brett, M. J. Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition. Adv. Funct. Mater. 2011, 21, 3652–3658.

    Article  CAS  Google Scholar 

  32. Ye, B. F.; Rong, F.; Gu, H. C.; Xie, Z. Y Cheng, Y.; Zhao, Y. J.; Gu, Z. Z. Bioinspired angle-independent photonic crystal colorimetric sensing. Chem. Commun. 2013, 49, 5331–5333.

    Article  CAS  Google Scholar 

  33. Ye, B. F.; Ding, H. B.; Cheng, Y.; Gu, H. C.; Zhao, Y. J.; Xie, Z. Y.; Gu, Z. Z. Photonic crystal microcapsules for label-free multiplex detection. Adv. Mater. 2014, 26, 3270–3274.

    Article  CAS  Google Scholar 

  34. Qin, M.; Sun, M.; Bai, R. B.; Mao, Y. Q.; Qian, X. S.; Sikka, D.; Zhao, Y.; Qi, H. J.; Suo, Z. G.; He, X. M. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv. Mater. 2018, 30, 1800468.

    Article  CAS  Google Scholar 

  35. Holtz, J. H.; Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997, 389, 829–832.

    Article  CAS  Google Scholar 

  36. Saito, H.; Takeoka, Y.; Watanabe, M. Simple and precision design of porous gel as a visible indicator for ionic species and concentration. Chem. Commun. 2003, 2126–2127.

  37. Lim, H. S.; Lee, J. H.; Walish, J. J.; Thomas, E. L. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 2012, 6, 8933–8939.

    Article  CAS  Google Scholar 

  38. Lova, P.; Manfredi, G.; Boarino, L.; Comite, A.; Laus, M.; Patrini, M.; Marabelli, F.; Soci, C.; Comoretto, D. Polymer distributed Bragg reflectors for vapor sensing. ACS Photonics 2015, 2, 537–543.

    Article  CAS  Google Scholar 

  39. Kim, C.; Lee, H.; Devaraj, V.; Kim, W. G.; Lee, Y.; Kim, Y.; Jeong, N. N.; Choi, E. J.; Baek, S. H.; Han, D. W. et al. Hierarchical cluster analysis of medical chemicals detected by a bacteriophage-based colorimetric sensor array. Nanomaterials 2020, 10, 121.

    Article  CAS  Google Scholar 

  40. Oh, H. J.; Yeang, B. J.; Park, Y. K.; Choi, H. J.; Kim, J. H.; Kang, Y. S.; Bae, Y.; Kim, J. Y.; Lim, S. J.; Lee, W. Washable colorimetric nanofiber nonwoven for ammonia gas detection. Polymers 2020, 12, 1585.

    Article  CAS  Google Scholar 

  41. Chi, H.; Ze, L. J.; Zhou, X. M.; Wang, F. K. Go film on flexible substrate: An approach to wearable colorimetric humidity sensor. Dyes Pigm. 2021, 185, 108916.

    Article  CAS  Google Scholar 

  42. Qin, M.; Sun, M.; Hua, M. T.; He, X. M. Bioinspired structural color sensors based on responsive soft materials. Curr. Opin. Solid State Mater. Sci. 2019, 23, 13–27.

    Article  CAS  Google Scholar 

  43. Choi, J.; Hua, M.; Lee, S. Y.; Jo, W.; Lo, C. Y.; Kim, S. H.; Kim, H. T.; He, X. M. Hydrocipher: Bioinspired dynamic structural color-based cryptographic surface. Adv. Opt. Mater. 2020, 8, 1901259.

    Article  CAS  Google Scholar 

  44. Fathi, F.; Rashidi, M. R.; Pakchin, P. S.; Ahmadi-Kandjani, S.; Nikniazi, A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2021, 221, 121615.

    Article  CAS  Google Scholar 

  45. Li, D.; Liu, X.; Li, W.; Lin, Z. H.; Zhu, B.; Li, Z. Z.; Li, J. L.; Li, B.; Fan, S. H.; Xie, J. W. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2021, 16, 153–158.

    Article  CAS  Google Scholar 

  46. Zhang, H. W.; Ly, K. C. S.; Liu, X. H.; Chen, Z. H.; Yan, M.; Wu, Z. L.; Wang, X.; Zheng, Y. B.; Zhou, H.; Fan, T. X. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. USA 2020, 117, 14657–14666.

    Article  CAS  Google Scholar 

  47. Wang, X.; Liu, X. H.; Li, Z. Y.; Zhang, H. W.; Yang, Z. W.; Zhou, H.; Fan, T. X. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 2020, 30, 1907562.

    Article  CAS  Google Scholar 

  48. Yang, M.; Zou, W. Z.; Guo, J.; Qian, Z. C.; Luo, H.; Yang, S. J.; Zhao, N.; Pattelli, L.; Xu, J.; Wiersma, D. S. Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling. ACS Appl. Mater. Interfaces 2020, 12, 25286–25293.

    Article  CAS  Google Scholar 

  49. Zhu, H. Z.; Li, Q.; Zheng, C. Q.; Hong, Y.; Xu, Z. Q.; Wang, H.; Shen, W. D.; Kaur, S.; Ghosh, P.; Qiu, M. High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 2020, 9, 60.

    Article  CAS  Google Scholar 

  50. Park, C.; Kim, J.; Hahn, J. W. Selective emitter with engineered anisotropic radiation to minimize dual-band thermal signature for infrared stealth technology. ACS Appl. Mater. Interfaces 2020, 12, 43090–43097.

    Article  CAS  Google Scholar 

  51. Zhu, H. Z.; Li, Q.; Tao, C. N.; Hong, Y.; Xu, Z. Q.; Shen, W. D.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. 2020, DOI: https://doi.org/10.21203/rs.3.rs-40658/v1. Research Square. https://www.researchsquare.com/article/rs-40658/v1 (accessed Dec 28, 2020).

  52. Pan, M. Y.; Huang, Y.; Li, Q.; Luo, H.; Zhu, H. Z.; Kaur, S.; Qiu, M. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 2020, 69, 104449.

    Article  CAS  Google Scholar 

  53. Xiao, L.; Ma, H.; Liu, J. K.; Zhao, W.; Jia, Y.; Zhao, Q.; Liu, K.; Wu, Y.; Wei, Y.; Fan, S. S. et al. Fast adaptive thermal camouflage based on flexible VO2/graphene/cnt thin films. Nano Lett. 2015, 15, 8365–8370.

    Article  CAS  Google Scholar 

  54. Kim, J.; Campbell, A. S.; De Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.

    Article  CAS  Google Scholar 

  55. Ghaffari, R.; Choi, J.; Raj, M. S.; Chen, S. L.; Lee, S. P.; Reeder, J. T.; Aranyosi, A. J.; Leech, A.; Li, W. H.; Schon, S. et al. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv. Funct. Mater. 2020, 30, 1907269.

    Article  CAS  Google Scholar 

  56. Someya, T.; Amagai, M. Toward a new generation of smart skins. Nat. Biotechnol. 2019, 37, 382–388.

    Article  CAS  Google Scholar 

  57. Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165.

    Article  Google Scholar 

  58. Gao, Y. J.; Yu, L. T.; Yeo, J. C.; Lim, C. T. Flexible hybrid sensors for health monitoring: Materials and mechanisms to render wearability. Adv. Mater. 2020, 32, 1902133.

    Article  CAS  Google Scholar 

  59. Bandodkar, A. J.; Jeerapan, I.; Wang, J. Wearable chemical sensors: Present challenges and future prospects. ACS Sens. 2016, 1, 464–482.

    Article  CAS  Google Scholar 

  60. Kim, J.; Campbell, A. S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 2018, 177, 163–170.

    Article  CAS  Google Scholar 

  61. Bandodkar, A. J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371.

    Article  CAS  Google Scholar 

  62. Bandodkar, A. J.; Jia, W. Z.; Wang, J. Tattoo-based wearable electrochemical devices: A review. Electroanalysis 2015, 27, 562–572.

    Article  CAS  Google Scholar 

  63. Campbell, A. S.; Kim, J.; Wang, J. Wearable electrochemical alcohol biosensors. Curr. Opin Electrochem. 2018, 10, 126–135.

    Article  CAS  Google Scholar 

  64. Jia, W. Z.; Bandodkar, A. J.; Valdés-Ramirez, G.; Windmiller, J. R.; Yang, Z. J.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 2013, 85, 6553–6560.

    Article  CAS  Google Scholar 

  65. Bandodkar, A. J.; Hung, V. W. S.; Jia, W. Z.; Valdés-Ramírez, G.; Windmiller, J. R.; Martinez, A. G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 2013, 138, 123–128.

    Article  CAS  Google Scholar 

  66. Guinovart, T.; Bandodkar, A. J.; Windmiller, J. R.; Andrade, F. J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 2013, 138, 7031–7038.

    Article  CAS  Google Scholar 

  67. Kim, J.; De Araujo, W. R.; Samek, I. A.; Bandodkar, A. J.; Jia, W. Z.; Brunetti, B.; Paixão, T. R. L. C.; Wang, J. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 2015, 51, 41–45.

    Article  CAS  Google Scholar 

  68. Kim, J.; Jeerapan, I.; Imani, S.; Cho, T. N.; Bandodkar, A.; Cinti, S.; Mercier, P. P.; Wang, J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 2016, 1, 1011–1019.

    Article  CAS  Google Scholar 

  69. Bandodkar, A. J.; Jeang, W. J.; Ghaffari, R.; Rogers, J. A. Wearable sensors for biochemical sweat analysis. Ann. Rev. Anal. Chem. 2019, 12, 1–22.

    Article  Google Scholar 

  70. Mayer, M.; Baeumner, A. J. A megatrend challenging analytical chemistry: Biosensor and chemosensor concepts ready for the internet of things. Chem. Rev. 2019, 119, 7996–8027.

    Article  CAS  Google Scholar 

  71. Zhai, Q.; Cheng, W. Soft and stretchable electrochemical biosensors. Mater. Today Nano 2019, 7, 100041.

    Article  Google Scholar 

  72. Bariya, M.; Nyein, H. Y. Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171.

    Article  Google Scholar 

  73. Choi, J.; Ghaffari, R.; Baker, L. B.; Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018, 4, eaar3921.

    Article  CAS  Google Scholar 

  74. Nakata, S.; Arie, T.; Akita, S.; Takei, K. Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS Sens. 2017, 2, 443–448.

    Article  CAS  Google Scholar 

  75. Yun, S. H.; Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed Eng 2017, 1, 0008.

    Article  CAS  Google Scholar 

  76. Van Soest, G.; Regar, E.; Van Der Steen, A. F. W. Photonics in cardiovascular medicine. Nat. Photon. 2015, 9, 626–629.

    Article  CAS  Google Scholar 

  77. Kim, H.; Beack, S.; Han, S.; Shin, M.; Lee, T.; Park, Y.; Kim, K. S.; Yetisen, A. K.; Yun, S. H.; Kwon, W. et al. Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications. Adv. Mater. 2018, 30, 1701460.

    Article  CAS  Google Scholar 

  78. Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.

    Article  CAS  Google Scholar 

  79. Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

    Article  CAS  Google Scholar 

  80. Liu, K.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Möhwald, H.; Yan, X. H. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew. Chem. 2016, 128, 3088–3091.

    Article  Google Scholar 

  81. Hamblin, M. R.; Huang, Y. Y.; Heiskanen, V. Non-mammalian hosts and photobiomodulation: Do all life-forms respond to light? Photochem Photobiol 2019, 95, 126–139.

    Article  CAS  Google Scholar 

  82. Kim, J. H.; Moon, J. H.; Lee, S. Y.; Park, J. Biologically inspired humidity sensor based on three-dimensional photonic crystals. Appl. Phys. Lett. 2010, 97, 103701.

    Article  CAS  Google Scholar 

  83. Potyrailo, R. A.; Bonam, R. K.; Hartley, J. G.; Starkey, T. A.; Vukusic, P.; Vasudev, M.; Bunning, T.; Naik, R. R.; Tang, Z. X.; Palacios, M. A. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nat. Commun. 2015, 6, 7959.

    Article  Google Scholar 

  84. Fu, T.; Zhao, X.; Chen, L.; Wu, W. S.; Zhao, Q.; Wang, X. L.; Guo, D. M.; Wang, Y. Z. Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 2019, 29, 1806586.

    Article  CAS  Google Scholar 

  85. Liu, F. F.; Shan, B.; Zhang, S. F.; Tang, B. T. SnO2 inverse opal composite film with low-angle-dependent structural color and enhanced mechanical strength. Langmuir 2018, 34, 3918–3924.

    Article  CAS  Google Scholar 

  86. Bae, K.; Lee, J.; Kang, G. M.; Yoo, D. S.; Lee, C. W.; Kim, K. Refractometric and colorimetric index sensing by a plasmon-coupled hybrid AAO nanotemplate. RSC Adv. 2015, 5, 103052–103059.

    Article  CAS  Google Scholar 

  87. Duan, X. Y.; Liu, N. Scanning plasmonic color display. ACS Nano 2018, 12, 8817–8823.

    Article  CAS  Google Scholar 

  88. Chung, K.; Yu, S.; Heo, C. J.; Shim, J. W.; Yang, S. M.; Han, M. G.; Lee, H. S.; Jin, Y.; Lee, S. Y.; Park, N. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 2012, 24, 2375–2379.

    Article  CAS  Google Scholar 

  89. Fu, F. F.; Shang, L. R.; Chen, Z. Y.; Yu, Y. R.; Zhao, Y. J. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, eaar8580.

    Article  Google Scholar 

  90. Zhong, K.; Liu, L. W.; Lin, J. Y.; Li, J. Q.; Van Cleuvenbergen, S.; Brullot, W.; Bloemen, M.; Song, K.; Clays, K. Bioinspired robust sealed colloidal photonic crystals of hollow microspheres for excellent repellency against liquid infiltration and ultrastable photonic band gap. Adv. Mater. Interfaces 2016, 3, 1600579.

    Article  CAS  Google Scholar 

  91. Kurland, N. E.; Dey, T.; Kundu, S. C.; Yadavalli, V. K. Precise patterning of silk microstructures using photolithography. Adv. Mater. 2013, 25, 6207–6212.

    Article  CAS  Google Scholar 

  92. Liu, W. P.; Zhou, Z. T.; Zhang, S. Q.; Shi, Z. F.; Tabarini, J.; Lee, W.; Zhang, Y. S.; Corder, S. N. G.; Li, X. X.; Dong, F. et al. Precise protein photolithography (p3): High performance biopatterning using silk fibroin light chain as the resist. Adv. Sci. 2017, 4, 1700191.

    Article  CAS  Google Scholar 

  93. Wang, Y.; Aurelio, D.; Li, W. Y.; Tseng, P.; Zheng, Z. Z.; Li, M.; Kaplan, D. L.; Liscidini, M.; Omenetto, F. G. Modulation of multiscale 3D lattices through conformational control: Painting silk inverse opals with water and light. Adv. Mater. 2017, 29, 1702769.

    Article  CAS  Google Scholar 

  94. Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24.

    Article  CAS  Google Scholar 

  95. Yoo, Y. J.; Lim, J. H.; Lee, G. J.; Jang, K. I.; Song, Y. M. Ultra-thin films with highly absorbent porous media fine-tunable for coloration and enhanced color purity. Nanoscale 2017, 9, 2986–2991.

    Article  CAS  Google Scholar 

  96. Yoo, Y. J. Y.; Ko, J. H.; Kim, W. G.; Kim, Y. J.; Kong, D. J.; Kim, S.; Oh, J. W.; Song, Y. M. Dual-mode colorimetric sensor based on ultrathin resonating facilitator capable of nanometer-thick virus detection for environment monitoring. ACS Appl. Nano Mater. 2020, 3, 6636–6644.

    Article  CAS  Google Scholar 

  97. Kim, Y. J.; Yoo, Y. J.; Lee, G. J.; Yoo, D. E.; Lee, D. W.; Siva, V.; Song, H.; Kang, I. S.; Song, Y. M. Enlarged color gamut representation enabled by transferable silicon nanowire arrays on metal-insulator-metal films. ACS Appl. Mater. Interfaces 2019, 11, 11849–11856.

    Article  CAS  Google Scholar 

  98. Yoo, Y. J.; Kim, W. G.; Ko, J. H.; Kim, Y. J.; Lee, Y.; Stanciu, S. G.; Lee, J. M.; Kim, S.; Oh, J. W.; Song, Y. M. Large-area virus coated ultrathin colorimetric sensors with a highly lossy resonant promoter for enhanced chromaticity. Adv. Sci. 2020, 7, 2000978.

    Article  CAS  Google Scholar 

  99. Kou, D. H.; Ma, W.; Zhang, S. F.; Lutkenhaus, J. L.; Tang, B. T. High-performance and multifunctional colorimetric humidity sensors based on mesoporous photonic crystals and nanogels. ACS Appl. Mater. Interfaces 2018, 10, 41645–41654.

    Article  CAS  Google Scholar 

  100. Jung, S. H.; Jung, Y. J.; Park, B. C.; Kong, H.; Lim, B.; Park, J. M.; Lee, H. I. Chromophore-free photonic multilayer films for the ultra-sensitive colorimetric detection of nerve agent mimics in the vapor phase. Sens. Actuators B Chem. 2020, 323, 128698.

    Article  CAS  Google Scholar 

  101. Bai, L.; Wang, Z. L.; He, Y. D.; Song, F.; Wang, X. L.; Wang, Y. Z. Flexible photonic cellulose nanocrystal films as a platform with multisensing functions. ACS Sustain Chem. Eng. 2020, 8, 18484–18491.

    Article  CAS  Google Scholar 

  102. Gallego-Gómez, F.; Morales, M.; Blanco, A.; López, C. Bare silica opals for real-time humidity sensing. Adv. Mater. Technol. 2019, 4, 1800493.

    Article  Google Scholar 

  103. Kim, S.; Mitropoulos, A. N.; Spitzberg, J. D.; Tao, H.; Kaplan, D. L.; Omenetto, F. G. Silk inverse opals. Nat. Photonics 2012, 6, 818–823.

    Article  CAS  Google Scholar 

  104. Jiang, Y. N.; Zhang, X. J.; Xiao, L. Z.; Yan, R. Y.; Xin, J. W.; Yin, C. X.; Jia, Y. X.; Zhao, Y.; Xiao, C. Y.; Zhang, Z. et al. Preparation of dual-emission polyurethane/carbon dots thermoresponsive composite films for colorimetric temperature sensing. Carbon 2020, 163, 36–33.

    Article  CAS  Google Scholar 

  105. Feng, J. F.; Gao, S. Y.; Shi, J. L.; Liu, T. F.; Cao, R. C-QDs@UIO-66-(COOH)2 composite film via electrophoretic deposition for temperature sensing. Inorg. Chem. 2018, 57, 2447–2454.

    Article  CAS  Google Scholar 

  106. Zhang, L. F.; Lyu, S. Y.; Zhang, Q. J.; Wu, Y. T.; Melcher, C.; Chmely, S. C.; Chen, Z. L.; Wang, S. Q. Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing. Carbohydr. Polym. 2019, 206, 767–777.

    Article  CAS  Google Scholar 

  107. Park, T. H.; Yu, S.; Cho, S. H.; Kang, H. S.; Kim, Y.; Kim, M. J.; Eoh, H.; Park, C.; Jeong, B.; Lee, S. W. et al. Block copolymer structural color strain sensor. NPG Asia Mater. 2018, 10, 328–339.

    Article  CAS  Google Scholar 

  108. Kim, D. Y.; Choi, S.; Cho, H.; Sun, J. Y. Electroactive soft photonic devices for the synesthetic perception of color and sound. Adv. Mater. 2019, 31, 1804080.

    Article  CAS  Google Scholar 

  109. Takeoka, Y.; Watanabe, M. Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir 2003, 19, 9104–9106.

    Article  CAS  Google Scholar 

  110. Wang, H.; Zhang, K. Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 2013, 13, 4192–4213.

    Article  CAS  Google Scholar 

  111. Tu, K. N.; Liu, Y. X.; Li, M. L. Effect of joule heating and current crowding on electromigration in mobile technology. Appl. Phys. Rev. 2017, 4, 011101.

    Article  CAS  Google Scholar 

  112. Zhu, L. X.; Raman, A.; Wang, K. X.; Anoma, M. A.; Fan, S. H. Radiative cooling of solar cells. Optica 2014, 1, 32–38.

    Article  CAS  Google Scholar 

  113. Dou, S. L.; Xu, H. B.; Zhao, J. P.; Zhang, K.; Li, N.; Lin, Y. P.; Pan, L.; Li, Y. Bioinspired microstructured materials for optical and thermal regulation. Adv. Mater. 2021, 33, 2000697.

    Article  CAS  Google Scholar 

  114. Ahn, J.; Lim, T.; Yeo, C. S.; Hong, T.; Jeong, S. M.; Park, S. Y.; Ju, S. Infrared invisibility cloak based on polyurethane-tin oxide composite microtubes. ACS Appl. Mater. Interfaces 2019, 11, 14296–14304.

    Article  CAS  Google Scholar 

  115. Lee, J.; Sul, H.; Jung, Y.; Kim, H.; Han, S.; Choi, J.; Shin, J.; Kim, D.; Jung, J.; Hong, S. et al. Thermally controlled, active imperceptible artificial skin in visible-to-infrared range. Adv. Funct. Mater. 2020, 30, 2003328.

    Article  CAS  Google Scholar 

  116. Lee, N.; Kim, T.; Lim, J. S.; Chang, I.; Cho, H. H. Metamaterialselective emitter for maximizing infrared camouflage performance with energy dissipation. ACS Appl. Mater. Interfaces 2019, 11, 21250–21257.

    Article  CAS  Google Scholar 

  117. Franklin, D.; Modak, S.; Vázquez-Guardado, A.; Safaei, A.; Chanda, D. Covert infrared image encoding through imprinted plasmonic cavities. Light Sci Appl 2018, 7, 93.

    Article  CAS  Google Scholar 

  118. Lee, G. J.; Kim, D. H.; Heo, S. Y.; Song, Y. M. Spectrally and spatially selective emitters using polymer hybrid spoof plasmonics. ACS Appl. Mater. Interfaces 2020, 12, 53206–53214.

    Article  CAS  Google Scholar 

  119. Qian, Z. Y.; Kang, S.; Rajaram, V.; Cassella, C.; McGruer, N. E.; Rinaldi, M. Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches. Nat. Nanotechnol. 2017, 12, 969–973.

    Article  CAS  Google Scholar 

  120. Hu, R.; Zhou, S. L.; Li, Y.; Lei, D. Y.; Luo, X. B.; Qiu, C. W. Illusion thermotics. Adv. Mater. 2018, 30, 1707237.

    Article  CAS  Google Scholar 

  121. Xie, X.; Li, X.; Pu, M. B.; Ma, X. L.; Liu, K. P.; Guo, Y. H.; Luo, X. G. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 2018, 28, 1706673.

    Article  CAS  Google Scholar 

  122. Kim, J.; Han, K.; Hahn, J. W. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci. Rep. 2017, 7, 6740.

    Article  CAS  Google Scholar 

  123. Xu, Z. Q.; Li, Q.; Du, K. K.; Long, S. W.; Yang, Y.; Cao, X.; Luo, H.; Zhu, H. Z.; Ghosh, P.; Shen, W. D. et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser Photonics Rev. 2020, 14, 1900162.

    Article  CAS  Google Scholar 

  124. Bakan, G.; Ayas, S.; Serhatlioglu, M.; Elbuken, C.; Dana, A. Invisible thin-film patterns with strong infrared emission as an optical security feature. Adv. Opt. Mater. 2018, 6, 1800613.

    Article  CAS  Google Scholar 

  125. Raman, A. P.; Anoma, M. A.; Zhu, L. X.; Rephaeli, E.; Fan, S. H. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544.

    Article  CAS  Google Scholar 

  126. Li, T.; Zhai, Y.; He, S. M.; Gan, W. T.; Wei, Z. Y.; Heidarinejad, M.; Dalgo, D.; Mi, R. Y.; Zhao, X. P.; Song, J. W. et al. A radiative cooling structural material. Science 2019, 364, 760–763.

    Article  CAS  Google Scholar 

  127. Hsu, P. C.; Liu, C.; Song, A. Y.; Zhang, Z.; Peng, Y. C.; Xie, J.; Liu, K.; Wu, C. L.; Catrysse, P. B.; Cai, L. L. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 2017, 3, e1700895.

    Article  CAS  Google Scholar 

  128. Heo, S. Y.; Lee, G. J.; Kim, D. H.; Kim, Y. J.; Ishii, S.; Kim, M. S.; Seok, T. J.; Lee, B. J.; Lee, H.; Song, Y. M. A Janus emitter for passive heat release from enclosures. Sci. Adv. 2020, 6, eabb1906.

    Article  CAS  Google Scholar 

  129. Lee, G. J.; Kim, Y. J.; Kim, H. M.; Yoo, Y. J.; Song, Y. M. Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes. Adv. Opt. Mater. 2018, 6, 1800707.

    Article  CAS  Google Scholar 

  130. Kang, M. H.; Lee, G. J.; Lee, J. H.; Kim, M. S.; Yan, J.; Jeong, J. W.; Jang, K.; Song, Y. M. Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv. Sci., 2021.

  131. Zhou, Y. P.; Liu, Y. N.; Li, Y.; Jiang, R. M.; Li, W. X.; Zhao, W. C.; Mao, R.; Deng, L. J.; Zhou, P. H. Flexible radiative cooling material based on amorphous alumina nanotubes. Opt. Mater. Express 2020, 10, 1641–1648.

    Article  CAS  Google Scholar 

  132. Mandal, J.; Fu, Y. K.; Overvig, A. C.; Jia, M. X.; Sun, K. R.; Shi, N. N.; Zhou, H.; Xiao, X. H.; Yu, N. F.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319.

    Article  CAS  Google Scholar 

  133. Low, T.; Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014, 8, 1086–1101.

    Article  CAS  Google Scholar 

  134. Hu, F. J.; Lucyszyn, S. Ultra-low cost ubiquitous THZ security systems. In Asia-Pacific Microwave Conference 2011, Melbourne, Australia, 2011, pp 60–62.

  135. Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    Article  CAS  Google Scholar 

  136. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105.

    Article  CAS  Google Scholar 

  137. Ferguson, B.; Zhang, X. C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33.

    Article  CAS  Google Scholar 

  138. Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497.

    Article  CAS  Google Scholar 

  139. Wang, C. Y.; Herr, T.; Del’Haye, P.; Schliesser, A.; Hofer, J.; Holzwarth, R.; Hänsch, T. W.; Picqué, N.; Kippenberg, T. J. Midinfrared optical frequency combs at 2.5 µm based on crystalline microresonators. Nat. Commun. 2013, 4, 1345.

    Article  CAS  Google Scholar 

  140. Jin, T. N.; Lin, H. Y. G.; Tiwald, T.; Lin, P. T. Flexible mid-infrared photonic circuits for real-time and label-free hydroxyl compound detection. Sci. Rep. 2019, 9, 4153.

    Article  CAS  Google Scholar 

  141. Aksu, S.; Huang, M.; Artar, A.; Yanik, A. A.; Selvarasah, S.; Dokmeci, M. R.; Altug, H. Flexible plasmonics on unconventional and nonplanar substrates. Adv. Mater. 2011, 23, 4422–4430.

    Article  CAS  Google Scholar 

  142. Shen, X. P.; Cui, T. J.; Martin-Cano, D.; Garcia-Vidal, F. J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. USA 2013, 110, 40–45.

    Article  CAS  Google Scholar 

  143. Lin, P. T.; Jung, H.; Kimerling, L. C.; Agarwal, A.; Tang, H. X. Low-loss aluminium nitride thin film for mid-infrared microphotonics. Laser Photonics Rev. 2014, 8, L23–L28.

    Article  CAS  Google Scholar 

  144. Limaj, O.; Etezadi, D.; Wittenberg, N. J.; Rodrigo, D.; Yoo, D.; Oh, S. H.; Altug, H. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Lett. 2016, 16, 1502–1508.

    Article  CAS  Google Scholar 

  145. Chang, C. Y.; Lin, H. T.; Lai, M. S.; Shieh, T. Y.; Peng, C. C.; Shih, M. H.; Tung, Y. C. Flexible localized surface plasmon resonance sensor with metal-insulator-metal nanodisks on PDMS substrate. Sci. Rep. 2018, 8, 11812.

    Article  CAS  Google Scholar 

  146. Kim, S. S.; Young, C.; Mizaikoff, B. Miniaturized mid-infrared sensor technologies. Anal. Bioanal. Chem. 2008, 390, 231–237.

    Article  CAS  Google Scholar 

  147. Salemizadeh, M.; Mahani, F. F.; Mokhtari, A. Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications. J. Opt. Soc. Am. B 2019, 36, 2863–2870.

    Article  CAS  Google Scholar 

  148. Rowe, D. J.; Smith, D.; Wilkinson, J. S. Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared. Sci. Rep. 2017, 7, 7356.

    Article  CAS  Google Scholar 

  149. Asgari, S.; Kashani, Z. G.; Granpayeh, N. Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators. J. Opt. 2018, 20, 045001.

    Article  CAS  Google Scholar 

  150. Xu, K. C.; Wang, Z. Y.; Tan, C. F.; Kang, N.; Chen, L. W.; Ren, L.; Thian, E. S.; Ho, G. W.; Ji, R.; Hong, M. H. Uniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 26341–26349.

    Article  CAS  Google Scholar 

  151. Yang, X. X.; Zhai, F.; Hu, H.; Hu, D. B.; Liu, R. N.; Zhang, S. P.; Sun, M. T.; Sun, Z. P.; Chen, J. N.; Dai, Q. Far-field spectroscopy and near-field optical imaging of coupled Plasmon-phonon polaritons in 2D van der Waals heterostructures. Adv. Mater. 2016, 28, 2931–2938.

    Article  CAS  Google Scholar 

  152. Hu, H.; Guo, X. D.; Hu, D. B.; Sun, Z. P.; Yang, X. X.; Dai, Q. Flexible and electrically tunable plasmons in graphene-mica heterostructures. Adv. Sci. 2018, 5, 1800175.

    Article  CAS  Google Scholar 

  153. Hänsel, K.; Wilde, N.; Haddadi, H.; Alomainy, A. Challenges with current wearable technology in monitoring health data and providing positive behavioural support. In Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare, Brussels, Belgium, 2015, pp 158–161.

  154. Herder, C.; Yu, M. D.; Koushanfar, F.; Devadas, S. Physical unclonable functions and applications: A tutorial. Proc. IEEE 2014, 102, 1126–1141.

    Article  Google Scholar 

  155. Committee on Armed Services, United States Senate. Inquiry into Counterfeit Electronic Parts in the Department of Defense Supply Chain; U.S. Government Printing Office: Washington, DC, USA, 2012; 112–167.

    Google Scholar 

  156. U.S. Department of Commerce. Defense Industrial Base Assessment: Counterfeit Electronics; Bureau of Industry and Security, Office of Technology Evaluation: Washington, DC, USA, 2010.

    Google Scholar 

  157. Li, H.; Wu, J. The war in the wearable device market: The analysis from economic perspective. In Pacific Asia Conference on Information Systems, Chengdu, China, Atlanta, 2014, pp 147.

  158. Gao, Y. S.; Ranasinghe, D. C.; Al-Sarawi, S. F.; Kavehei, O.; Abbott, D. Emerging physical unclonable functions with nanotechnology. IEEE Access 2016, 4, 61–80.

    Article  Google Scholar 

  159. O’brien, J.; Lehtonen, K. Counterfeit mobile devices-the duck test. In Proceedings of 2015 10th International Conference on Malicious and Unwanted Software, Fajardo, USA, 2015, pp 144–151.

  160. Leem, J. W.; Kim, M. S.; Choi, S. H.; Kim, S. R.; Kim, S. W.; Song, Y. M.; Young, R. J.; Kim, Y. L. Edible unclonable functions. Nat. Commun. 2020, 11, 328.

    Article  CAS  Google Scholar 

  161. Pecht, M.; Tiku, S. Bogus: Electronic manufacturing and consumers confront a rising tide of counterfeit electronics. IEEE Spectr. 2006, 43, 37–46.

    Article  Google Scholar 

  162. Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031.

    Article  CAS  Google Scholar 

  163. Won, P.; Kim, K. K.; Kim, H.; Park, J. J.; Ha, I.; Shin, J.; Jung, J.; Cho, H.; Kwon, J.; Lee, H. et al. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater., in press, https://doi.org/10.1002/adma.202002397.

  164. Qu, Y. R.; Li, Q.; Cai, L.; Pan, M. Y.; Ghosh, P.; Du, K. K.; Qiu, M. Thermal camouflage based on the phase-changing material GST. Light Sci. Appl. 2018, 7, 26.

    Article  CAS  Google Scholar 

  165. Peng, L.; Liu, D. Q.; Cheng, H. F.; Zhou, S.; Zu, M. A multilayer film based selective thermal emitter for infrared stealth technology. Adv. Opt. Mater. 2018, 6, 1801006.

    Article  CAS  Google Scholar 

  166. Danaeifar, M.; Granpayeh, N. Wideband invisibility by using inhomogeneous metasurfaces of graphene nanodisks in the infrared regime. J. Opt. Soc. Am. B 2016, 33, 1764–1768.

    Article  CAS  Google Scholar 

  167. Zhang, C. L.; Wu, X. Y.; Huang, C.; Peng, J. Q.; Ji, C.; Yang, J. N.; Huang, Y. J.; Guo, Y. H.; Luo, X. G. Flexible and transparent microwave-infrared bistealth structure. Adv. Mater. Technol. 2019, 4, 1900063.

    Article  CAS  Google Scholar 

  168. Morin, S. A.; Shepherd, R. F.; Kwok, S. W.; Stokes, A. A.; Nemiroski, A.; Whitesides, G. M. Camouflage and display for soft machines. Science 2012, 337, 828–832.

    Article  CAS  Google Scholar 

  169. Li, P. N.; Yang, X. S.; Maß, T. W. W.; Hanss, J.; Lewin, M.; Michel, A. K. U.; Wuttig, M.; Taubner, T. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat. Mater. 2016, 15, 870–875.

    Article  CAS  Google Scholar 

  170. Collier, R. Optical Holography; Elsevier: Amsterdam, 2013.

    Google Scholar 

  171. Picart, P. New Techniques in Digital Holography; John Wiley & Sons: London, 2015.

    Book  Google Scholar 

  172. Bianco, V.; Paturzo, M.; Finizio, A.; Ferraro, P. Off-axis self-reference digital holography in the visible and far-infrared region. ETRI J. 2019, 41, 84–92.

    Article  Google Scholar 

  173. Vandenrijt, J. F.; Thizy, C.; Martin, L.; Beaumont, F.; Garcia, J.; Fabron, C.; Prieto, É.; Maciaszek, T.; Georges, M. P. Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test. Opt. Eng. 2016, 55, 121723.

    Article  Google Scholar 

  174. Georges, M. P.; Thizy, C.; Languy, F.; Vandenrijt, J. F. An overview of interferometric metrology and ndt techniques and applications for the aerospace industry. In Proceedings of SPIE 9960 Interferometry XVIII, San Diego, USA, 2016, pp 996007.

  175. Vandenrijt, J. F.; Thizy, C.; Georges, M. P.; Queeckers, P.; Dubois, F.; Doyle, D. Long-wave infrared digital holography for the qualification of large space reflectors. In Proceedings of SPIE 10564, International Conference on Space Optics—ICSO 2012, Ajaccio, France, 2017, p 1056403.

  176. Georges, M.; Vandenrijt, J. F.; Thizy, C.; Dubois, F.; Queeckers, P.; Doyle, D.; Pedrini, G.; Alexeenko, I.; Osten, W. Digital holographic interferometry and ESPI at long infrared wavelengths with CO2 lasers. In Digital Holography and Three-Dimensional Imaging, Miami, USA, 2012, pp DW4C.1.

  177. Stoykova, E.; Yaraş, F.; Kang, H.; Onural, L.; Geltrude, A.; Locatelli, M.; Paturzo, M.; Pelagotti, A.; Meucci, R.; Ferraro, P. Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination. Opt. Lett. 2012, 37, 3120–3122.

    Article  CAS  Google Scholar 

  178. Paturzo, M.; Pelagotti, A.; Geltrude, A.; Locatelli, M.; Poggi, P.; Meucci, R.; Ferraro, P.; Stoykova, E.; Yaraş, F.; Yontem, A. Ö. et al. Infrared digital holography applications for virtual museums and diagnostics of cultural heritage. In Proceedings of SPIE 8084, O3A: Optics for Arts, Architecture, and Archaeology III, Munich, Germany, 2011, p 80840K.

  179. Locatelli, M.; Pugliese, E.; Paturzo, M.; Bianco, V.; Finizio, A.; Pelagotti, A.; Poggi, P.; Miccio, L.; Meucci, R.; Ferraro, P. Imaging live humans through smoke and flames using far-infrared digital holography. Opt. Express 2013, 21, 5379–5390.

    Article  CAS  Google Scholar 

  180. Sun, J. Y.; Hu, F. J.; Lucyszyn, S. Predicting atmospheric attenuation under pristine conditions between 0.1 and 100 THz. IEEE Access 2016, 4, 9377–9399.

    Article  Google Scholar 

  181. Larouche, S.; Tsai, Y. J.; Tyler, T.; Jokerst, N. M.; Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 2012, 11, 450–454.

    Article  CAS  Google Scholar 

  182. Yakhkind, A. K. Optical graded-index elements made from glass. J. Opt. Technol. 2003, 70, 877–881.

    Article  CAS  Google Scholar 

  183. Jin, Y.; Tai, H.; Hiltner, A.; Baer, E.; Shirk, J. S. New class of bioinspired lenses with a gradient refractive index. J. Appl. Polym. Sci. 2007, 103, 1834–1841.

    Article  CAS  Google Scholar 

  184. Freese, W.; Kämpfe, T.; Kley, E. B.; Tünnermann, A. Design of binary subwavelength multiphase level computer generated holograms. Opt. Lett. 2010, 35, 676–678.

    Article  Google Scholar 

  185. Liu, X. L.; Starr, T.; Starr, A. F.; Padilla, W. J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 2010, 104, 207403.

    Article  CAS  Google Scholar 

  186. Zhang, S.; Fan, W. J.; Panoiu, N. C.; Malloy, K. J.; Osgood, R. M.; Brueck, S. R. J. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 2005, 95, 137404.

    Article  CAS  Google Scholar 

  187. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photonics 2007, 1, 41–48.

    Article  CAS  Google Scholar 

  188. Huang, L. L.; Zhang, S.; Zentgraf, T. Metasurface holography: From fundamentals to applications. Nanophotonics 2018, 7, 1169–1190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (Nos. NRF-2020R1A2C2004983, NRF2018M3D1A1058997, and NRF-2018R1A4A1025623). This work was also supported by the GIST Research Institute (GRI) grant funded by the GIST in 2020 and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and by the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea (No. 20183010014310). This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-01000, Light field and LiDAR sensor fusion systems for full self-driving).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, Y.J., Heo, SY., Kim, Y.J. et al. Functional photonic structures for external interaction with flexible/wearable devices. Nano Res. 14, 2904–2918 (2021). https://doi.org/10.1007/s12274-021-3388-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3388-x

Keywords

Navigation