Skip to main content
Log in

Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing earth-abundant electrocatalysts with high performance towards water oxidation is highly decisive for the sustainable energy technologies. This study develops a facile natural corrosion approach to fabricate nickel-iron hydroxides for water oxidation. The resulted electrode demonstrates an outstanding activity and stability with an overpotential of 275 mV to deliver 10 mA·cm−2. Experimental and theoretical results suggest the corrosion-induced formation of hydroxides and their transformation to oxyhydroxides would account for this excellent performance. This work not only provides an interesting corrosion approach for the fabrication of excellent water oxidation electrode, but also bridges traditional corrosion engineering and novel materials fabrication, which would offer some insights in the innovative principles for nanomaterials and energy technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

    Article  Google Scholar 

  2. Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

    Article  CAS  Google Scholar 

  3. Fang, W. S.; Huang, L.; Zaman, S.; Wang, Z. T.; Han, Y. J.; Xia, B. Y. Recent progress on two-dimensional electrocatalysis. Chem. Res. Chin. Univ. 2020, 36, 611–621.

    Article  CAS  Google Scholar 

  4. Xu, Y. Y.; Deng, P. L.; Chen, G. D.; Chen, J. X.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 2020, 30, 1906081.

    Article  CAS  Google Scholar 

  5. Gong, L. Q.; Yang, H.; Douka, A. I.; Yan, Y.; Xia, B. Y. Recent progress on NiFe-based electrocatalysts for alkaline oxygen evolution. Adv. Sustain. Syst. 2021, 5, 2000136.

    Article  CAS  Google Scholar 

  6. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  Google Scholar 

  7. Liao, P. L.; Keith, J. A.; Carter, E. A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 2012, 134, 13296–13309.

    Article  CAS  Google Scholar 

  8. Dotan, H.; Landman, A.; Sheehan, S. W.; Malviya, K. D.; Shter, G. E.; Grave, D. A.; Arzi, Z.; Yehudai, N.; Halabi, M.; Gal, N. et al. Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting. Nat. Energy 2019, 4, 786–795.

    Article  CAS  Google Scholar 

  9. Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

    Article  CAS  Google Scholar 

  10. Zhang, J. Y.; Yan, Y.; Mei, B. B.; Qi, R. J.; He, T.; Wang, Z. T.; Fang, W. S.; Zaman, S.; Su, Y. Q., Ding, S. J. et al. Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 2021, 14, 365–373.

    Article  CAS  Google Scholar 

  11. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

    Article  CAS  Google Scholar 

  12. Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z. Q.; Yin, W.; Wang, D.; Huang, Y. H.; Wang, J.; Wang, D. L. et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 2014, 136, 8941–8946.

    Article  CAS  Google Scholar 

  13. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

    Article  CAS  Google Scholar 

  14. Zhang, B.; Xiao, C. H.; Xie, S. M.; Liang, J.; Chen, X.; Tang, Y. H. Iron-nickel nitride nanostructures in situ grown on surface-redoxetching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 2016, 28, 6934–6941.

    Article  CAS  Google Scholar 

  15. Mohammed-Ibrahim, J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power Sources 2020, 448, 227375.

    Article  CAS  Google Scholar 

  16. Chen, G.; Zhu, Y. P.; Chen, H. M.; Hu, Z. W.; Hung, S. F.; Ma, N. N.; Dai, J.; Lin, H. J.; Chen, C. T.; Zhou, W. et al. An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv. Mater. 2019, 31, 1900883.

    Article  Google Scholar 

  17. Ma, Y. M.; Wang, K.; Liu, D. Y.; Yang, X. X.; Wu, H.; Xiao, C. H.; Ding, S. J. Surface dual-oxidation induced metallic copper doping into NiFe electrodes for electrocatalytic water oxidation. J. Mater. Chem. A 2019, 7, 22889–22897.

    Article  CAS  Google Scholar 

  18. Yin, S. M.; Tu, W. G.; Sheng, Y.; Du, Y. H.; Kraft, M.; Borgna, A.; Xu, R. A highly efficient oxygen evolution catalyst consisting of interconnected nickel-iron-layered double hydroxide and carbon nanodomains. Adv. Mater. 2018, 30, 1705106.

    Article  Google Scholar 

  19. Zhang, W.; Wu, Y. Z.; Qi, J.; Chen, M. X.; Cao, R. A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 2017, 7, 1602547.

    Article  Google Scholar 

  20. Lu, Z. Y.; Qian, L.; Tian, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 2016, 52, 908–911.

    Article  CAS  Google Scholar 

  21. Liu, H. W.; Fu, C. Y.; Gu, T. Y.; Zhang, G. A.; Lv, Y. L.; Wang, H. T.; Liu, H. F. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corros. Sci. 2015, 100, 484–495.

    Article  CAS  Google Scholar 

  22. Santana Rodríguez, J. J.; Santana Hernández, F. J.; González González, J. E. Comparative study of the behaviour of AISI 304 SS in a natural seawater hopper, in sterile media and with SRB using electrochemical techniques and SEM. Corros. Sci. 2006, 48, 1265–1278.

    Article  Google Scholar 

  23. Yin, H. J.; Jiang, L. X.; Liu, P. R.; Al-Mamun, M.; Wang, Y.; Zhong, Y. L.; Yang, H. G.; Wang, D.; Tang, Z. Y.; Zhao, H. J. Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Res. 2018, 11, 3959–3971.

    Article  CAS  Google Scholar 

  24. Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 2018, 9, 2609.

    Article  Google Scholar 

  25. Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

    Article  CAS  Google Scholar 

  26. Wang, J. Y.; Ji, L. L.; Zuo, S. S.; Chen, Z. F. Hierarchically structured 3D integrated electrodes by galvanic replacement reaction for highly efficient water splitting. Adv. Energy Mater. 2017, 7, 1700107.

    Article  Google Scholar 

  27. Malara, F.; Minguzzi, A.; Marelli, M.; Morandi, S.; Psaro, R.; Dal Santo, V.; Naldoni, A. α-Fe2O3/NiOOH: An effective heterostructure for photoelectrochemical water oxidation. ACS Catal. 2015, 5, 5292–5300.

    Article  CAS  Google Scholar 

  28. Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.

    Article  CAS  Google Scholar 

  29. Hunter, B. M.; Blakemore, J. D.; Deimund, M.; Gray, H. B.; Winkler, J. R.; Muller, A. M. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 2014, 136, 13118–13121.

    Article  CAS  Google Scholar 

  30. Gao, Y. Q.; Li, H. B.; Yang, G. W. Amorphous nickel hydroxide nanosheets with ultrahigh activity and super-long-term cycle stability as advanced water oxidation catalysts. Cryst. Growth. Des. 2015, 15, 4475–4483.

    Article  CAS  Google Scholar 

  31. Huang, J. W.; Sun, Y. H.; Zhang, Y. D.; Zou, G. F.; Yan, C. Y.; Cong, S.; Lei, T. Y.; Dai, X.; Guo, J.; Lu, R. F. et al. A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv. Mater. 2018, 30, 1705045.

    Article  Google Scholar 

  32. Yang, H.; Gong, L. Q.; Wang, H. M.; Dong, C. L.; Wang, J. L.; Qi, K.; Liu, H. F.; Guo, X. P.; Xia, B. Y. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075.

    Article  CAS  Google Scholar 

  33. Xiao, C. H.; Zhang, B.; Li, D. Partial-sacrificial-template synthesis of Fe/Ni phosphides on Ni foam: A strongly stabilized and efficient catalyst for electrochemical water splitting. Electrochim. Acta 2017, 242, 260–267.

    Article  CAS  Google Scholar 

  34. Görlin, M.; de Araújo, J. F.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H. et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070–2082.

    Article  Google Scholar 

  35. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  CAS  Google Scholar 

  36. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

    Article  CAS  Google Scholar 

  37. Wang, T. Y.; Nam, G.; Jin, Y.; Wang, X. Y.; Ren, P. J.; Kim, M. G.; Liang, J. S.; Wen, X. D.; Jang, H.; Han, J. T. et al. NiFe (oxy)hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: The effect of surface S residues. Adv. Mater. 2018, 30, 1800757.

    Article  Google Scholar 

  38. Li, P. S.; Duan, X. X.; Kuang, Y.; Li, Y. P.; Zhang, G. X.; Liu, W.; Sun, X. M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater. 2018, 8, 1703341.

    Article  Google Scholar 

  39. Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 22075092), China Postdoctoral Science Foundation (No. 2018M642810), and the Program for HUST Academic Frontier Youth Team (No. 2018QYTD15). We also acknowledge the support of Analytical and Testing Center of Huazhong University of Science and Technology for Raman, SEM, and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao Yu Xia.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Yang, H., Wang, H. et al. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 14, 4528–4533 (2021). https://doi.org/10.1007/s12274-021-3366-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3366-3

Keywords

Navigation