Skip to main content
Log in

A high-strength self-healing nano-silica hydrogel with anisotropic differential conductivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Soft nano electronic materials based on conductive hydrogels have attracted considerable attention due to their exceptional properties. Particle deposition and poor interface compatibility often diminish the mechanical strength and electron transport capabilities of the conductive hydrogel. Mechanical damage can severely impact the performance of the conductive hydrogel and can even damage electronic devices based on the conductive hydrogel. In the current study, a transparent nano-silica hydrogel is prepared by employing an extremely easy-to-operate method. This approach can preclude the deposition of particles via strong mechanical force. In addition, controlling the concentration of the reaction interface makes the hydrogel grow along the mechanical force in the direction with a special directional hole structure formed. The hydrogel is transparent, showing excellent self-healing properties—it can self-heal within 15 seconds. Remarkably, the hydrogel after self-healing maintains its performance. Moreover, it has excellent mechanical properties and can be stretched in length. Up to 1,200% of the original length, the tensile strength of the gel spline can reach 7 MPa. The viscosity of the hydrogel can reach 1.67 × 108 (MPs). In addition, a large amount of Na+ in this hydrogel endow it a conductivity of 389 ε/cm. The conductivity of this hydrogel is adjustable result from the special pore structure. Lastly, the difference between the horizontal and vertical conductivity of the same sample can reach 3–4 times, thus this hydrogel can be used in the field of nano conductive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y.; Liu, B. R.; Pan, L. J.; Yu, G. H. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 2013, 6, 2856–2870.

    Article  CAS  Google Scholar 

  2. Wang, K.; Zhang, X.; Li, C.; Sun, X. Z.; Meng, Q. H.; Ma, Y. W.; Wei, Z. X. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv. Mater. 2015, 27, 7451–7457.

    Article  CAS  Google Scholar 

  3. Jin, X. T.; Sun, G. Q.; Zhang, G. F.; Yang, H. S.; Xiao, Y. K.; Gao, J.; Zhang, Z. P.; Qu, L. T. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 2019, 12, 1199–1206.

    Article  CAS  Google Scholar 

  4. Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

    Article  CAS  Google Scholar 

  5. Liu, K.; Pan, X. F.; Chen, L. H.; Huang, L. L.; Ni, Y. H.; Liu, J.; Cao, S. L.; Wang, H. P. Ultrasoft self-healing nanoparticle-hydrogel composites with conductive and magnetic properties. ACS Sustainable Chem. Eng. 2018, 6, 6395–6403.

    Article  CAS  Google Scholar 

  6. Shi, Y.; Zhang, J.; Pan, L. J.; Shi, Y.; Yu, G. H. Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today 2016, 11, 738–762.

    Article  CAS  Google Scholar 

  7. Tian, M.; Chen, X.; Sun, S. T.; Yang, D.; Wu, P. Y. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Res. 2019, 12, 1121–1127.

    Article  CAS  Google Scholar 

  8. Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.

    Article  CAS  Google Scholar 

  9. Meng, F. L.; Zhong, H. X.; Yan, J. M.; Zhang, X. B. Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for highperformance rechargeable Zn-air batteries. Nano Res. 2017, 10, 4436–4447.

    Article  CAS  Google Scholar 

  10. Shi, Z. J.; Gao, X.; Ullah, M. W.; Li, S. X.; Wang, Q.; Yang, G. Electroconductive natural polymer-based hydrogels. Biomaterials 2016, 111, 40–54.

    Article  CAS  Google Scholar 

  11. Deng, G. H.; Li, F. Y.; Yu, H. X.; Liu, F. Y.; Liu, C. Y.; Sun, W. X.; Jiang, H. F.; Chen, Y. M. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett. 2012, 1, 275–279.

    Article  CAS  Google Scholar 

  12. Gaina, C.; Ursache, O.; Gaina, V.; Varganici, C. D. Thermally reversible cross-linked poly(ether-urethane)s. Exp. Polym. Lett. 2013, 7, 636–650.

    Article  CAS  Google Scholar 

  13. Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987.

    Article  CAS  Google Scholar 

  14. Shi, L. Y.; Wang, F. L.; Zhu, W.; Xu, Z. P.; Fuchs, S.; Hilborn, J.; Zhu, L. J.; Ma, Q.; Wang, Y. J.; Weng, X. S. et al. Self-healing silk fibroin-based hydrogel for bone regeneration: Dynamic metal-ligand self-assembly approach. Adv. Funct. Mater. 2017, 27, 1700591.

    Article  CAS  Google Scholar 

  15. Chen, X. Y.; Fan, M.; Tan, H. P.; Ren, B. W.; Yuan, G. L.; Jia, Y.; Li, J. L.; Xiong, D. S.; Xing, X. D.; Niu, X. H. et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 619–629.

    Article  CAS  Google Scholar 

  16. Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015, 33, 1855–1867.

    Article  CAS  Google Scholar 

  17. Shao, C. Y.; Chang, H. L.; Wang, M.; Xu, F.; Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 2017, 9, 28305–28318.

    Article  CAS  Google Scholar 

  18. Pu, W. F.; Jiang, F.; Chen, P.; Wei, B. A POSS based hydrogel with mechanical robustness, cohesiveness and a rapid self-healing ability by electrostatic interaction. Soft Matter 2017, 13, 5645–5648.

    Article  CAS  Google Scholar 

  19. Chen, W. P.; Hao, D. Z.; Hao, W. J.; Guo, X. L.; Jiang, L. Hydrogel with ultrafast self-healing property both in air and underwater. ACS Appl. Mater. Interfaces 2018, 10, 1258–1265.

    Article  CAS  Google Scholar 

  20. You, B. H.; Li, Q. T.; Dong, H.; Huang, T.; Cao, X. D.; Liao, H. Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair. J. Mater. Sci. Technol. 2018, 34, 1016–1025.

    Article  Google Scholar 

  21. Chen, X. L.; He, M. M.; Zhang, X. H.; Lu, T.; Hao, W. Z.; Zhao, Y. S.; Liu, Y. M. Metal-free and stretchable conductive hydrogels for high transparent conductive film and flexible strain sensor with high sensitivity. Macromol. Chem. Phys. 2020, 221, 2000054.

    Article  CAS  Google Scholar 

  22. Sun, Y.; Ren, Y. Y.; Li, Q.; Shi, R. W.; Hu, Y.; Guo, J. N.; Sun, Z.; Yan, F. Conductive, stretchable, and self-healing ionic gel based on dynamic covalent bonds and electrostatic interaction. Chin. J. Polym. Sci. 2019, 37, 1053–1059.

    Article  CAS  Google Scholar 

  23. Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E. et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 2015, 27, 2433–2439.

    Article  CAS  Google Scholar 

  24. Zhang, L. L.; Zhang, Q.; Yu, J.; Ma, J. X.; Wang, Z. G.; Fan, Y. M.; Kuga, S. Strengthened cellulosic gels by the chemical gelation of cellulose via crosslinking with TEOS. Cellulose 2019, 26, 9819–9829.

    Article  CAS  Google Scholar 

  25. Bian, H. Y.; Wei, L. Q.; Lin, C. X.; Ma, Q. L.; Dai, H. Q.; Zhu, J. Y. Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustainable Chem. Eng. 2018, 6, 4821–4828.

    Article  CAS  Google Scholar 

  26. Chalitangkoon, J.; Wongkittisin, M.; Monvisade, P. Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings. Int. J. Biol. Macromol. 2020, 159, 194–203.

    Article  CAS  Google Scholar 

  27. Zhu, L. T.; Zong, L.; Wu, X. C.; Li, M. L.; Wang, H. S.; You, J.; Li, C. X. Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 2018, 12, 4462–4468.

    Article  CAS  Google Scholar 

  28. Yamamoto, T.; Tayakout-Fayolle, M.; Iimura, K.; Satone, H.; Kakibe, T.; Itoh, K.; Maeda, K. Effect of high pressure on growth of colloidal particles during sol-gel phase transition of resorcinol-formaldehyde solution. Adsorption 2019, 25, 1115–1120.

    Article  CAS  Google Scholar 

  29. Li, Y. S.; Hu, X. M.; Cheng, W. M.; Shao, Z. A.; Xue, D.; Zhao, Y. Y.; Lu, W. A novel high-toughness, organic/inorganic double-network fire-retardant gel for coal-seam with high ground temperature. Fuel 2020, 263, 116779.

    Article  CAS  Google Scholar 

  30. Chen, T.; Zhang, S. H.; Lin, Q. H.; Wang, M. J.; Yang, Z.; Zhang, Y. L.; Wang, F. X.; Sun, L. N. Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface. Nanoscale 2020, 12, 21271–21279.

    Article  CAS  Google Scholar 

  31. Liang, Y. P.; Zhao, X.; Hu, T. L.; Chen, B. J.; Yin, Z. H.; Ma, P. X.; Guo, B. L. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 2019, 15, 1900046.

    Article  CAS  Google Scholar 

  32. Yin, F. X.; Yang, J. Z.; Peng, H. F.; Yuan, W. J. Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric. J. Mater. Chem. C 2018, 6, 6840–6846.

    Article  CAS  Google Scholar 

  33. Tang, Z. H.; Yao, D. J.; Du, D. H.; Ouyang, J. Y. Highly machine-washable e-textiles with high strain sensitivity and high thermal conduction. J. Mater. Chem. C 2020, 8, 2741–2748.

    Article  CAS  Google Scholar 

  34. Li, T. K.; Chen, L. L.; Yang, X.; Chen, X.; Zhang, Z. H.; Zhao, T. T.; Li, X. F.; Zhang, J. H. A flexible pressure sensor based on an MXene-textile network structure. J. Mater. Chem. C 2019, 7, 1022–1027.

    Article  CAS  Google Scholar 

  35. Yang, S. T.; Li, C. W.; Chen, X. Y.; Zhao, Y. P.; Zhang, H.; Wen, N. X.; Fan, Z.; Pan, L. J. Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl. Mater. Interfaces 2020, 12, 19874–19881.

    Article  CAS  Google Scholar 

  36. Pan, S. X.; Xia, M.; Fang, Z. P.; Fu, J.; Wu, Y. T.; Sun, Z. G.; Zhang, Y. H.; He, P. X. High-strength, rapidly self-recoverable, and antifatigue Nano-SiO2/Poly (acrylamide-lauryl methacrylate) composite hydrogels. Macromol. Mater. Eng. 2019, 304, 1900130.

    Article  CAS  Google Scholar 

  37. Wei, P. L.; Chen, T.; Chen, G. Y.; Liu, H. M.; Mugaanire, I. T.; Hou, K.; Zhu, M. F. Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties. ACS Appl. Mater. Interfaces 2020, 12, 3068–3079.

    Article  CAS  Google Scholar 

  38. Ding, Y. C.; Xu, T.; Onyilagha, O.; Fong, H.; Zhu, Z. T. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl. Mater. Interfaces 2019, 11, 6685–6704.

    Article  CAS  Google Scholar 

  39. Lian, Y. L.; Yu, H.; Wang, M. Y.; Yang, X. N.; Li, Z.; Yang, F.; Wang, Y.; Tai, H. L.; Liao, Y. L.; Wu, J. Y. et al. A multifunctional wearable E-textile via integrated nanowire-coated fabrics. J. Mater. Chem. C 2020, 8, 8399–8409.

    Article  CAS  Google Scholar 

  40. Archana, D.; Dutta, J.; Dutta, P. K. Evaluation of chitosan Nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 2013, 57, 193–203.

    Article  CAS  Google Scholar 

  41. Sun, W. X.; Jiang, H. T.; Wu, X.; Xu, Z. Y.; Yao, C.; Wang, J.; Qin, M.; Jiang, Q.; Wang, W.; Shi, D. Q. et al. Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery. Nano Res. 2019, 12, 115–119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Science foundation of Jiangsu provincial University (16KJA220005). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhou, X., Zhou, H. et al. A high-strength self-healing nano-silica hydrogel with anisotropic differential conductivity. Nano Res. 14, 2589–2595 (2021). https://doi.org/10.1007/s12274-020-3259-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3259-x

Keywords

Navigation