Skip to main content
Log in

Axiotaxy driven growth of belt-shaped InAs nanowires in molecular beam epitaxy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we demonstrate the axiotaxy driven growth of belt-shaped InAs nanowires using Au catalysts by molecular beam epitaxy. It is found that, the zinc-blende structured InAs nanowires, with the features of [\(\bar{1}\bar{1}\bar{3}\)] growth direction and extensive {\(1\bar{1}0\)} side-surfaces, are induced by catalysts in Au-In α phase through the axiotaxy growth, in which the lattice mismatch between the projections of atomic planes onto nanowire/catalyst interfaces is minimized by forming extraordinary tilted interfaces. Our atomic-resolution in situ TEM heating experiments show that the catalysts remained in the solid state of Au-In α phase during the axiotaxy growth, by which the vapor—solid—solid growth mechanism can be confirmed. Through manipulating the growth direction, this unusual growth mechanism can provide a practical pathway to control the morphology of the low-dimensional nanomaterials, from conventional nanowires to belt-shaped nanowires utilizing a significant lateral growth, simply using nanoparticles as catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suominen, H. J.; Kjaergaard, M.; Hamilton, A. R.; Shabani, J.; Palmstrøm, C. J.; Marcus, C. M.; Nichele, F. Zero-energy modes from coalescing Andreev states in a two-dimensional semiconductor-superconductor hybrid platform. Phys. Rev. Lett. 2017, 119, 176805.

    Article  CAS  Google Scholar 

  2. Źutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

    Article  Google Scholar 

  3. Seker, F.; Meeker, K.; Kuech, T. F.; Ellis, A. B. Surface chemistry of prototypical bulk II–VI and III–V semiconductors and implications for chemical sensing. Chem. Rev. 2000, 100, 2505–2536.

    Article  CAS  Google Scholar 

  4. Pan, D.; Wang, J. Y.; Zhang, W.; Zhu, L. J.; Su, X. J.; Fan, F. R.; Fu, Y. H.; Huang, S. Y.; Wei, D. H.; Zhang, L. J. et al. Dimension engineering of high-quality InAs nanostructures on a wafer scale. Nano Lett. 2019, 19, 1632–1642.

    Article  CAS  Google Scholar 

  5. Pan, D.; Fan, D. X.; Kang, N.; Zhi, J. H.; Yu, X. Z.; Xu, H. Q.; Zhao, J. H. Free-standing two-dimensional single-crystalline InSb nanosheets. Nano Lett. 2016, 16, 834–841.

    Article  CAS  Google Scholar 

  6. Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Zou, J.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Parkinson, P. et al. III–V semiconductor nanowires for optoelectronic device applications. Prog.Quant. Electron. 2011, 35, 23–75.

    Article  Google Scholar 

  7. Sun, R.; Jacobsson, D.; Chen, I. J.; Nilsson, M.; Thelander, C.; Lehmann, S.; Dick, K. A. Sn-seeded GaAs nanowires as self-assembled radial p-n junctions. Nano Lett. 2015, 15, 3757–3762.

    Article  CAS  Google Scholar 

  8. Zhou, C.; Zheng, K.; Liao, Z. M.; Chen, P. P.; Lu, W.; Zou, J. Phase purification of GaAs nanowires by prolonging the growth duration in MBE. J. Mater. Chem. C 2017, 5, 5257–5262.

    Article  CAS  Google Scholar 

  9. Xu, H. Y.; Wang, Y.; Guo, Y. N.; Liao, Z. M.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zou, J. Defect-free <110> zinc-blende structured InAs nanowires catalyzed by palladium. Nano Lett. 2012, 12, 5744–5749.

    Article  CAS  Google Scholar 

  10. Meyer-Holdt, J.; Kanne, T.; Sestoft, J. E.; Gejl, A.; Zeng, L. J.; Johnson, E.; Olsson, E.; Nygård, J.; Krogstrup, P. Ag-catalyzed InAs nanowires grown on transferable graphite flakes. Nanotechnology 2016, 27, 365603.

    Article  Google Scholar 

  11. Soo, M. T.; Zheng, K.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zou, J. Mirror-twin induced bicrystalline InAs nanoleaves. Nano Res. 2016, 9, 766–773.

    Article  CAS  Google Scholar 

  12. Kelrich, A.; Sorias, O.; Calahorra, Y.; Kauffmann, Y.; Gladstone, R.; Cohen, S.; Orenstein, M.; Ritter, D. InP nanoflag growth from a nanowire template by in situ catalyst manipulation. Nano Lett. 2016, 16, 2837–2844.

    Article  CAS  Google Scholar 

  13. Li, C.; Yu, Y. F.; Chi, M. F.; Cao, L. Y. Epitaxial nanosheet-nanowire heterostructures. Nano Lett. 2013, 13, 948–953.

    Article  CAS  Google Scholar 

  14. Sun, Q.; Gao, H.; Zhang, X. T.; Yao, X. M.; Xu, S. D.; Zheng, K.; Chen, P. P.; Lu, W.; Zou, J. High-quality epitaxial wurtzite structured InAs nanosheets grown in MBE. Nanoscale 2020, 12, 271–276.

    Article  CAS  Google Scholar 

  15. Sun, Q.; Gao, H.; Yao, X. M.; Zheng, K.; Chen, P. P.; Lu, W.; Zou, J. Au-catalysed free-standing wurtzite structured InAs nanosheets grown by molecular beam epitaxy. Nano Res. 2019, 12, 2718–2722.

    Article  CAS  Google Scholar 

  16. Cahn, J. W.; Hanneman, R. E. (111) Surface tensions of III-V compounds and their relationship to spontaneous bending of thin crystals. Surf. Sci. 1964, 1, 387–398.

    Article  CAS  Google Scholar 

  17. Aagesen, M.; Johnson, E.; Sørensen, C. B.; Mariager, S. O.; Feidenhans’l, R.; Spiecker, E.; Nygård, J.; Lindelof, P. E. Molecular beam epitaxy growth of free-standing plane-parallel InAs nanoplates. Nat. Nanotechnol. 2007, 2, 761–764.

    Article  CAS  Google Scholar 

  18. Joyce, H. J.; Wong-Leung, J.; Gao, Q.; Tan, H. H.; Jagadish, C. Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett. 2010, 10, 908–915.

    Article  CAS  Google Scholar 

  19. Sun, W.; Huang, Y.; Guo, Y. A.; Liao, Z. M.; Gao, Q.; Tan, H. H.; Jagadish, C.; Liao, X. Z.; Zou, J. Spontaneous formation of core-shell GaAsP nanowires and their enhanced electrical conductivity. J. Mater. Chem. C 2015, 3, 1745–1750.

    Article  CAS  Google Scholar 

  20. Zhou, C.; Zheng, K.; Chen, P. P.; Matsumura, S.; Lu, W.; Zou, J. Crystal-phase control of GaAs-GaAsSb core-shell/axial nanowire heterostructures by a two-step growth method. J. Mater. Chem. C 2018, 6, 6726–6732.

    Article  CAS  Google Scholar 

  21. Sun, Q.; Gao, H.; Zhang, X. T.; Yao, X. M.; Zheng, K.; Chen, P. P.; Lu, W.; Zou, J. Free-standing InAs nanobelts driven by polarity in MBE. ACS Appl. Mater. Interfaces 2019, 11, 44609–44616.

    Article  CAS  Google Scholar 

  22. Zhang, Z.; Lu, Z. Y.; Chen, P. P.; Lu, W.; Zou, J. Controlling the crystal phase and structural quality of epitaxial InAs nanowires by tuning V/III ratio in molecular beam epitaxy. Acta Mater. 2015, 92, 25–32.

    Article  CAS  Google Scholar 

  23. Lindberg, C.; Whiticar, A.; Dick, K. A.; Skold, N.; Nygard, J.; Bolinsson, J. Silver as seed-particle material for GaAs nanowires-dictating crystal phase and growth direction by substrate orientation. Nano Lett. 2016, 16, 2181–2188.

    Article  CAS  Google Scholar 

  24. Krishnamachari, U.; Borgstrom, M.; Ohlsson, B. J.; Panev, N.; Samuelson, L.; Seifert, W.; Larsson, M. W.; Wallenberg, L. R. Defect-free InP nanowires grown in [001] direction on InP (001). Appl. Phys. Lett. 2004, 85, 2077–2079.

    Article  CAS  Google Scholar 

  25. Zou, Y. C.; Chen, Z. G.; Lin, J.; Zhou, X. H.; Lu, W.; Drennan, J.; Zou, J. Morphological control of SnTe nanostructures by tuning catalyst composition. Nano Res. 2015, 8, 3011–3019.

    Article  CAS  Google Scholar 

  26. Panciera, F.; Chou, Y. C.; Reuter, M. C.; Zakharov, D.; Stach, E. A.; Hofmann, S.; Ross, F. M. Synthesis of nanostructures in nanowires using sequential catalyst reactions. Nat. Mater. 2015, 14, 820–825.

    Article  CAS  Google Scholar 

  27. Rae, A. U. M.; Gobeli, G. W. Low-energy electron-diffraction study of the cleaved (110) surfaces of InSb, InAs, GaAs, and GaSb. J. Appl. Phys. 1964, 35, 1629–1638.

    Article  Google Scholar 

  28. Zhang, Z.; Han, X. D.; Zou, J. Direct realizing the growth direction of epitaxial nanowires by electron microscopy. Sci. China Mater. 2015, 58, 433–440.

    Article  CAS  Google Scholar 

  29. Fultz, B.; Howe, J. M. Transmission Electron Microscopy and Diffractometry of Materials: Springer: Berlin, Heidelberg, 2012.

    Google Scholar 

  30. Wang, J.; Plissard, S. R.; Verheijen, M. A.; Feiner, L. F.; Cavalli, A.; Bakkers, E. P. A. M. Reversible switching of InP nanowire growth direction by catalyst engineering. Nano Lett. 2013, 13, 3802–3806.

    Article  CAS  Google Scholar 

  31. Gao, H.; Sun, Q.; Sun, W.; Tan, H. H.; Jagadish, C.; Zou, J. Understanding the effect of catalyst size on the epitaxial growth of hierarchical structured InGaP nanowires. Nano Lett. 2019, 19, 8262–8269.

    Article  CAS  Google Scholar 

  32. Paladugu, M.; Zou, J.; Guo, Y. N.; Auchterlonie, G. J.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y. Novel growth phenomena observed in axial InAs/GaAs nanowire heterostructures. Small 2007, 3, 1873–1877.

    Article  CAS  Google Scholar 

  33. Milnes, A. G.; Polyakov, A. Y. Indium arsenide: A semiconductor for high speed and electro-optical devices. Mater. Sci. Eng. B 1993, 18, 237–259.

    Article  Google Scholar 

  34. Hiscocks, S. E. R.; Hume-Rothery, W. The equilibrium diagram of the system gold-indium. Proc. Roy. Soc. A 1964, 282, 318–330.

    CAS  Google Scholar 

  35. Okamoto, H. Au-In (gold-indium). J. Phase Equilib. Diffus. 2004, 25, 197–198.

    Article  CAS  Google Scholar 

  36. Detavernier, C.; Özcan, A. S.; Jordan-Sweet, J.; Stach, E. A.; Tersoff, J.; Ross, F. M.; Lavoie, C. An off-normal fibre-like texture in thin films on single-crystal substrates. Nature 2003, 426, 641–645.

    Article  CAS  Google Scholar 

  37. Cui, H.; Lü, Y. Y.; Yang, G. W.; Chen, Y. M.; Wang, C. X. Step-flow kinetics model for the vapor-solid-solid Si nanowires growth. Nano Lett. 2015, 15, 3640–3645.

    Article  CAS  Google Scholar 

  38. Lin, P. A.; Liang, D.; Reeves, S.; Gao, X. P. A.; Sankaran, R. M. Shape-controlled Au particles for InAs nanowire growth. Nano Lett. 2012, 12, 315–320.

    Article  CAS  Google Scholar 

  39. Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.

    Article  CAS  Google Scholar 

  40. Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Reversible loss of core-shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411–417.

    Article  CAS  Google Scholar 

  41. Wang, L. H.; Du, K.; Yang, C. P.; Teng, J.; Fu, L. B.; Guo, Y. Z.; Zhang, Z.; Han, X. D. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum. Nat. Commun. 2020, 11, 1167.

    Article  CAS  Google Scholar 

  42. Liu, B. Y.; Liu, F.; Yang, N.; Zhai, X. B.; Zhang, L.; Yang, Y.; Li, B.; Li, J.; Ma, E.; Nie, J. F.; Shan, Z. W. Large plasticity in magnesium mediated by pyramidal dislocations. Science 2019, 365, 73–75.

    Article  CAS  Google Scholar 

  43. Sun, Q.; Pan, D.; Li, M.; Zhao, J. H.; Chen, P. P.; Lu, W.; Zou, J. In situ TEM observation of the vapor-solid-solid growth of >\(00\bar{1}\)< InAs nanowires. Nanoscale 2020, 12, 11711–11717.

    Article  CAS  Google Scholar 

  44. Dubrovskii, V. G. Nucleation Theory and Growth of Nanostructures; Springer: Heidelberg, 2014.

    Book  Google Scholar 

  45. de la Mata, M.; Leturcq, R.; Plissard, S. R.; Rolland, C.; Magén, C.; Arbiol, J.; Caroff, P. Twin-Induced InSb nanosails: A convenient high mobility quantum system. Nano Lett. 2016, 16, 825–833.

    Article  CAS  Google Scholar 

  46. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  CAS  Google Scholar 

  47. Duparc, O. H.; Poulat, S.; Larere, A.; Thibault, J.; Priester, L. High-resolution transmission electron microscopy observations and atomic simulations of the structures of exact and near Σ = 11, {332} tilt grain boundaries in nickel. Philos. Mag. A 2000, 80, 853–870.

    Article  CAS  Google Scholar 

  48. Hinch, B. J.; Lock, A.; Madden, H. H.; Toennies, J. P.; Witte, G. Helium-atom scattering investigation of facetting of the Al stepped (332) surface. Phys. Rev. B 1990, 42, 1547–1559.

    Article  CAS  Google Scholar 

  49. Shapiro, A. P.; Miller, T.; Chiang, T. C. Angle-resolved photoemission studies of a surface state on a stepped Cu(332) surface. Phys. Rev. B 1988, 38, 1779–1783.

    Article  CAS  Google Scholar 

  50. Chadi, D. J. Atomic and electronic structures of (111), (211), and (311) surfaces of GaAs. J. Vac. Sci. Technol. B 1985, 3, 1167–1169.

    Article  CAS  Google Scholar 

  51. Zou, J.; Paladugu, M.; Wang, H.; Auchterlonie, G. J.; Guo, Y. N.; Kim, Y.; Gao, Q.; Joyce, H. J.; Tan, H. H.; Jagadish, C. Growth mechanism of truncated triangular III-V nanowires. Small 2007, 3, 389–393.

    Article  CAS  Google Scholar 

  52. Zhang, Z.; Chen, P. P.; Lu, W.; Zou, J. Defect-free thin InAs nanowires grown using molecular beam epitaxy. Nanoscale 2016, 8, 1401–1406.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council, the National Key R&D Program of China (No. 2016YFB0402401), the National Natural Science Foundation of China (Nos. 11634009, 11774016, and 61974138), the Natural Science Basic Research Program of Shaanxi Province (No. 2020JQ-222) and the Key Programs of Frontier Science of the Chinese Academy of Sciences (No. QYZDJ-SSW-JSC007). Dong Pan acknowledges the support from the Youth Innovation Promotion Association, the Chinese Academy of Sciences (Grant 2017156). The authors acknowledge the Microscopy Australia for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Pan, D., Zhang, X. et al. Axiotaxy driven growth of belt-shaped InAs nanowires in molecular beam epitaxy. Nano Res. 14, 2330–2336 (2021). https://doi.org/10.1007/s12274-020-3231-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3231-9

Keywords

Navigation