Skip to main content
Log in

Opto-valleytronics in the 2D van der Waals heterostructure

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of information processing devices with minimum carbon emission is crucial in this information age. One of the approaches to tackle this challenge is by using valleys (local extremum points in the momentum space) to encode the information instead of charges. The valley information in some material such as monolayer transition metal dichalcogenide (TMD) can be controlled by using circularly polarized light. This opens a new field called opto-valleytronics. In this article, we first review the valley physics in monolayer TMD and two-dimensional (2D) heterostructure composed of monolayer TMD and other materials. Such 2D heterostructure has been shown to exhibit interesting phenomena such as interlayer exciton, magnetic proximity effect, and spin-orbit proximity effect, which is beneficial for opto-valleytronics application. We then review some of the optical valley control methods that have been used in the monolayer TMD and the 2D heterostructure. Finally, a summary and outlook of the 2D heterostructure opto-valleytronics are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809.

    Google Scholar 

  2. Mak, K. F.; Xiao, D.; Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics 2018, 12, 451–460.

    CAS  Google Scholar 

  3. Vitale, S. A.; Nezich, D.; Varghese, J. O.; Kim, P.; Gedik, N.; Jarillo-Herrero, P.; Xiao, D.; Rothschild, M. Valleytronics: Opportunities, challenges, and paths forward. Small 2018, 14, 1801483.

    Google Scholar 

  4. Sallen, G.; Bouet, L.; Marie, X.; Wang, G.; Zhu, C. R.; Han, W. P.; Lu, Y.; Tan, P. H.; Amand, T.; Liu, B. L. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 2012, 86, 081301.

    Google Scholar 

  5. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    CAS  Google Scholar 

  6. Cao, T.; Wang, G.; Han, W.P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

    Google Scholar 

  7. Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Google Scholar 

  8. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

    CAS  Google Scholar 

  9. Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.

    CAS  Google Scholar 

  10. Ye, Z. L.; Sun, D. Z.; Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 2017, 13, 26–29.

    CAS  Google Scholar 

  11. Langer, F.; Schmid, C. P.; Schlauderer, S.; Gmitra, M.; Fabian, J.; Nagler, P.; Schüller, C.; Korn, T.; Hawkins, P. G.; Steiner, J. T. et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 2018, 557, 76–80.

    CAS  Google Scholar 

  12. Liu, Y. D.; Fang, H. L.; Rasmita, A.; Zhou, Y.; Li, J. T.; Yu, T.; Xiong, Q. H.; Zheludev, N.; Liu, J.; Gao, W. B. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 2019, 5, eaav4506.

    CAS  Google Scholar 

  13. Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

    CAS  Google Scholar 

  14. Ye, Y.; Wong, Z. J.; Lu, X. F.; Ni, X. J.; Zhu, H. Y.; Chen, X. H.; Wang, Y.; Zhang, X. Monolayer excitonic laser. Nat. Photonics 2015, 9, 733–737.

    CAS  Google Scholar 

  15. Li, Y. Z.; Zhang, J. X.; Huang, D. D.; Sun, H.; Fan, F.; Feng, J. B.; Wang, Z.; Ning, C. Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 2017, 12, 987–992.

    CAS  Google Scholar 

  16. Shang, J. Z.; Cong, C. X.; Wang, Z. L.; Peimyoo, N.; Wu, L. S.; Zou, C. J.; Chen, Y.; Chin, X. Y.; Wang, J. P.; Soci, C. et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 2017, 8, 543.

    Google Scholar 

  17. Paik, E. Y.; Zhang, L.; Burg, G. W.; Gogna, R.; Tutuc, E.; Deng, H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019, 576, 80–84.

    CAS  Google Scholar 

  18. Lundt, N.; Nagler, P.; Nalitov, A.; Klembt, S.; Wurdack, M.; Stoll, S.; Harder, T. H.; Betzold, S.; Baumann, V.; Kavokin, A. V. et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon Trion-polaritons with a MoSe2 monolayer. 2D Mater. 2017, 4, 025096.

    Google Scholar 

  19. Sun, Z.; Gu, J.; Ghazaryan, A.; Shotan, Z.; Considine, C. R.; Dollar, M.; Chakraborty, B.; Liu, X. Z.; Ghaemi, P.; Kéna-Cohen, S. et al. Optical control of room-temperature valley polaritons. Nat. Photonics 2017, 11, 491–496.

    CAS  Google Scholar 

  20. Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Withers, F.; Schwarz, S.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photonics 2017, 11, 497–501.

    CAS  Google Scholar 

  21. Hu, F. R.; Fei, Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 1901003.

    CAS  Google Scholar 

  22. Chen, Y. J.; Cain, J. D.; Stanev, T. K.; Dravid, V. P.; Stern, N. P. Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat. Photonics 2017, 11, 431–435.

    CAS  Google Scholar 

  23. Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Catanzaro, A.; Withers, F.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 2018, 9, 4797.

    CAS  Google Scholar 

  24. Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725–728.

    CAS  Google Scholar 

  25. Scuri, G.; Andersen, T. I.; Zhou, Y.; Wild, D. S.; Sung, J.; Gelly, R. J.; Bérubé, D.; Heo, H.; Shao, L. B.; Joe, A. Y. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 2020, 124, 217403.

    CAS  Google Scholar 

  26. Jiang, C. Y.; Xu, W. G.; Rasmita, A.; Huang, Z. M.; Li, K.; Xiong, Q. H.; Gao, W. B. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 2018, 9, 753.

    Google Scholar 

  27. Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.

    Google Scholar 

  28. Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoğlu, A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 2015, 11, 141–147.

    CAS  Google Scholar 

  29. Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152.

    CAS  Google Scholar 

  30. MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.

    CAS  Google Scholar 

  31. Li, Y. L.; Ludwig, J.; Low, T.; Chernikov, A.; Cui, X.; Arefe, G.; Kim, Y. D.; Van Der Zande, A. M.; Rigosi, A.; Hill, H. M. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 2014, 113, 266804.

    Google Scholar 

  32. Wang, Y. Q.; Deng, L. J.; Wei, Q. L.; Wan, Y.; Liu, Z.; Lu, X.; Li, Y.; Bi, L.; Zhang, L.; Lu, H. P. et al. Spin-valley locking effect in defect states of monolayer MoS2. Nano Lett. 2020, 20, 2129–2136.

    CAS  Google Scholar 

  33. Li, Q.; Zhao, X. X.; Deng, L. J.; Shi, Z. T.; Liu, S.; Wei, Q. L.; Zhang, L. B.; Cheng, Y. C.; Zhang, L.; Lu, H. P. et al. Enhanced valley Zeeman splitting in Fe-doped monolayer MoS2. ACS Nano 2020, 14, 4636–4645.

    CAS  Google Scholar 

  34. Lee, J.; Wang, Z. F.; Xie, H. C.; Mak, K. F.; Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 2017, 16, 887–891.

    CAS  Google Scholar 

  35. Geim, A. K.; Grigorieva, I. V. van der Waals heterostructures. Nature 2013, 499, 419–425.

    CAS  Google Scholar 

  36. Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764–767.

    CAS  Google Scholar 

  37. Žutić, I.; Matos-Abiague, A.; Scharf, B.; Dery, H.; Belashchenko, K. Proximitized materials. Mater. Today 2019, 22, 85–107.

    Google Scholar 

  38. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

    CAS  Google Scholar 

  39. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    CAS  Google Scholar 

  40. Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

    CAS  Google Scholar 

  41. Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

    CAS  Google Scholar 

  42. Lebègue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.

    Google Scholar 

  43. Li, T. S.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 2007, 111, 16192–16196.

    CAS  Google Scholar 

  44. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  45. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    CAS  Google Scholar 

  46. Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

    CAS  Google Scholar 

  47. Nguyen, P. V.; Teutsch, N. C.; Wilson, N. P.; Kahn, J.; Xia, X.; Graham, A. J.; Kandyba, V.; Giampietri, A.; Barinov, A.; Constantinescu, G. C. et al. Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature 2019, 572, 220–223.

    CAS  Google Scholar 

  48. Jin, W. C.; Yeh, P. C.; Zaki, N.; Zhang, D. T.; Sadowski, J. T.; Al-Mahboob, A.; Van Der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2013, 111, 106801.

    Google Scholar 

  49. Liu, G. B.; Shan, W. Y.; Yao, Y. G.; Yao, W.; Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 2013, 88, 085433.

    Google Scholar 

  50. Liu, G. B.; Xiao, D.; Yao, Y. G.; Xu, X. D.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663.

    CAS  Google Scholar 

  51. Kormányos, A.; Zólyomi, V.; Drummond, N. D.; Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 2014, 4, 011034.

    Google Scholar 

  52. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    CAS  Google Scholar 

  53. Sundaram, G.; Niu, Q. Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects. Phys. Rev. B 1999, 59, 14915–14925.

    CAS  Google Scholar 

  54. Xiao, D.; Chang, M. C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007.

    CAS  Google Scholar 

  55. Yu, H. Y.; Liu, G. B.; Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 2018, 5, 035021.

    Google Scholar 

  56. Onga, M.; Zhang, Y. J.; Ideue, T.; Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 2017, 16, 1193–1197.

    CAS  Google Scholar 

  57. Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.

    CAS  Google Scholar 

  58. Xu, S. Y.; Ma, Q.; Shen, H. T.; Fatemi, V.; Wu, S. F.; Chang, T. R.; Chang, G. Q.; Valdivia, A. M. M.; Chan, C. K.; Gibson, Q. D. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 2018, 14, 900–906.

    CAS  Google Scholar 

  59. Yu, H. Y.; Wu, Y.; Liu, G. B.; Xu, X. D.; Yao, W. Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D Crystals. Phys. Rev. Lett. 2014, 113, 156603.

    Google Scholar 

  60. Sie, E. J.; McIver, J. W.; Lee, Y. H.; Fu, L.; Kong, J.; Gedik, N. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 2015, 14, 290–294.

    CAS  Google Scholar 

  61. Kim, J.; Hong, X. P.; Jin, C. H.; Shi, S. F.; Chang, C. Y. S.; Chiu, M. H.; Li, L. J.; Wang, F. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 2014, 346, 1205–1208.

    CAS  Google Scholar 

  62. Sie, E. J.; Lui, C. H.; Lee, Y. H.; Fu, L.; Kong, J.; Gedik, N. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 2017, 355, 1066–1069.

    CAS  Google Scholar 

  63. Kioseoglou, G.; Hanbicki, A. T.; Currie, M.; Friedman, A. L.; Jonker, B. T. Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2. Sci. Rep. 2016, 6, 25041.

    CAS  Google Scholar 

  64. Carvalho, B. R.; Wang, Y. X.; Mignuzzi, S.; Roy, D.; Terrones, M.; Fantini, C.; Crespi, V. H.; Malard, L. M.; Pimenta, M. A. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 2017, 8, 14670.

    Google Scholar 

  65. Yu, T.; Wu, M. W. Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2. Phys. Rev. B 2014, 89, 205303.

    Google Scholar 

  66. Glazov, M. M.; Amand, T.; Marie, X.; Lagarde, D.; Bouet, L.; Urbaszek, B. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 2014, 89, 201302.

    Google Scholar 

  67. Zhu, C. R.; Zhang, K.; Glazov, M.; Urbaszek, B.; Amand, T.; Ji, Z. W.; Liu, B. L.; Marie, X. Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 2014, 90, 161302.

    Google Scholar 

  68. Yan, T. F.; Qiao, X. F.; Tan, P. H.; Zhang, X. H. Valley depolarization in monolayer WSe2. Sci. Rep. 2015, 5, 15625.

    CAS  Google Scholar 

  69. Guo, L.; Wu, M.; Cao, T.; Monahan, D. M.; Lee, Y. H.; Louie, S. G.; Fleming, G. R. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys. 2019, 15, 228–232.

    CAS  Google Scholar 

  70. Schmidt, R.; Berghäuser, G.; Schneider, R.; Selig, M.; Tonndorf, P.; Malić, E.; Knorr, A.; Michaelis de Vasconcellos, S.; Bratschitsch, R. Ultrafast Coulomb-induced intervalley coupling in atomically thin WS2. Nano Lett. 2016, 16, 2945–2950.

    CAS  Google Scholar 

  71. Schmidt, R.; Arora, A.; Plechinger, G.; Nagler, P.; Granados del Águila, A.; Ballottin, M. V.; Christianen, P. C. M.; Michaelis de Vasconcellos, S.; Schüller, C.; Korn, T. et al. Magneticfield-induced rotation of polarized light emission from monolayer WS2. Phys. Rev. Lett. 2016, 117, 077402.

    Google Scholar 

  72. Wang, G.; Marie, X.; Liu, B. L.; Amand, T.; Robert, C.; Cadiz, F.; Renucci, P.; Urbaszek, B. Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 2016, 117, 187401.

    CAS  Google Scholar 

  73. Hao, K.; Moody, G.; Wu, F. C.; Dass, C. K.; Xu, L. X.; Chen, C. H.; Sun, L. Y.; Li, M. Y.; Li, L. J.; MacDonald, A. H. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 2016, 12, 677–682.

    CAS  Google Scholar 

  74. Liang, Y. F.; Huang, S. T.; Soklaski, R.; Yang, L. Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides. Appl. Phys.cs Lett. 2013, 103, 042106.

    Google Scholar 

  75. Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 2016, 94, 035125.

    Google Scholar 

  76. Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.

    Google Scholar 

  77. Wilson, N. R.; Nguyen, P. V.; Seyler, K.; Rivera, P.; Marsden, A. J.; Laker, Z. P. L.; Constantinescu, G. C.; Kandyba, V.; Barinov, A.; Hine, N. D. M. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832.

    Google Scholar 

  78. Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 2017, 17, 938–945.

    CAS  Google Scholar 

  79. Wang, F.; Wang, J. Y.; Guo, S.; Zhang, J. Z.; Hu, Z. G.; Chu, J. H. Tuning coupling behavior of stacked heterostructures based on MoS2, WS2, and WSe2. Sci. Rep. 2017, 7, 44712.

    CAS  Google Scholar 

  80. Kang, J.; Li, J. B.; Li, S. S.; Xia, J. B.; Wang, L. W. Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 2013, 13, 5485–5490.

    CAS  Google Scholar 

  81. Miller, B.; Steinhoff, A.; Pano, B.; Klein, J.; Jahnke, F.; Holleitner, A.; Wurstbauer, U. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 2017, 17, 5229–5237.

    CAS  Google Scholar 

  82. Seamons, J. A.; Morath, C. P.; Reno, J. L.; Lilly, M. P. Coulomb drag in the exciton regime in electron-hole bilayers. Phys. Rev. Lett. 2009, 102, 026804.

    CAS  Google Scholar 

  83. Rivera, P.; Yu, H. Y.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004–1015.

    CAS  Google Scholar 

  84. Liu, F.; Wu, W. J.; Bai, Y. S.; Chae, S. H.; Li, Q. Y.; Wang, J.; Hone, J.; Zhu, X. Y. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 2020, 367, 903–906.

    CAS  Google Scholar 

  85. Karni, O.; Barré, E.; Lau, S. C.; Gillen, R.; Ma, E. Y.; Kim, B.; Watanabe, K.; Taniguchi, T.; Maultzsch, J.; Barmak, K. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 2019, 123, 247402.

    CAS  Google Scholar 

  86. Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, Moirr patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

    Google Scholar 

  87. Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

    Google Scholar 

  88. Wu, F. C.; Lovorn, T.; Tutuc, E.; MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide Moira bands. Phys. Rev. Lett. 2018, 121, 026402.

    CAS  Google Scholar 

  89. Wu, F. C.; Lovorn, T.; Tutuc, E.; Martin, I.; MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 2019, 122, 086402.

    CAS  Google Scholar 

  90. Regan, E. C.; Wang, D. Q.; Jin, C. H.; Bakti Utama, M. I.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 Moir superlattices. Nature 2020, 579, 359–363.

    CAS  Google Scholar 

  91. Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 Moirl superlattices. Nature 2020, 579, 353–358.

    CAS  Google Scholar 

  92. Shimazaki, Y.; Schwartz, I.; Watanabe, K.; Taniguchi, T.; Kroner, M.; Imamoğlu, A. Strongly correlated electrons and hybrid excitons in a Moirn heterostructure. Nature 2020, 580, 472–477.

    CAS  Google Scholar 

  93. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of Moira-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    CAS  Google Scholar 

  94. Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

    CAS  Google Scholar 

  95. Ciarrocchi, A.; Unuchek, D.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 2019, 13, 131–136.

    CAS  Google Scholar 

  96. Jin, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of Moirr excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

    CAS  Google Scholar 

  97. Jin, C. H.; Regan, E. C.; Wang, D. Q.; Iqbal Bakti Utama, M.; Yang, C. S.; Cain, J.; Qin, Y.; Shen, Y. X.; Zheng, Z. R.; Watanabe, K. et al. Identification of spin, valley and Moire quasi-angular momentum of interlayer excitons. Nat. Phys. 2019, 15, 1140–1144.

    CAS  Google Scholar 

  98. Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for Moire excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

    CAS  Google Scholar 

  99. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

    CAS  Google Scholar 

  100. Zhang, N.; Surrente, A.; Baranowski, M.; Maude, D. K.; Gant, P.; Castellanos-Gomez, A.; Plochocka, P. Moiré intralayer excitons in a MoSe2/MoS2 Heterostructure. Nano Lett. 2018, 18, 7651–7657.

    CAS  Google Scholar 

  101. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Topological exciton bands in Moirl heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.

    Google Scholar 

  102. Wang, Y.; Wang, Z.; Yao, W.; Liu, G. B.; Yu, H. Y. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 2017, 95, 115429.

    Google Scholar 

  103. Wang, T. M.; Miao, S. N.; Li, Z. P.; Meng, Y. Z.; Lu, Z. G.; Lian, Z.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S. et al. Giant valley-Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 2020, 20, 694–700.

    CAS  Google Scholar 

  104. Zhang, L.; Gogna, R.; Burg, G. W.; Horng, J.; Paik, E.; Chou, Y. H.; Kim, K.; Tutuc, E.; Deng, H. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 2019, 100, 041402.

    CAS  Google Scholar 

  105. Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

    CAS  Google Scholar 

  106. Kulig, M.; Zipfel, J.; Nagler, P.; Blanter, S.; Schüller, C.; Korn, T.; Paradiso, N.; Glazov, M. M.; Chernikov, A. Exciton diffusion and Halo effects in monolayer semiconductors. Phys. Rev. Lett. 2018, 120, 207401.

    CAS  Google Scholar 

  107. Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 2018, 560, 340–344.

    CAS  Google Scholar 

  108. Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Sun, Z.; Watanabe, K.; Taniguchi, T.; Kis, A. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 2019, 14, 1104–1109.

    CAS  Google Scholar 

  109. Jauregui, L. A.; Joe, A. Y.; Pistunova, K.; Wild, D. S.; High, A. A.; Zhou, Y.; Scuri, G.; De Greve, K.; Sushko, A.; Yu, C. H. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 2019, 366, 870–875.

    CAS  Google Scholar 

  110. Huang, Z. M.; Liu, Y. D.; Dini, K.; Tan, Q. H.; Liu, Z. J.; Fang, H. L.; Liu, J.; Liew, T.; Gao, W. B. Robust room temperature valley Hall effect of interlayer excitons. Nano Lett. 2020, 20, 1345–1351.

    CAS  Google Scholar 

  111. Liu, Y. D.; Novoselov, K. S.; Gao, W. B. Electrically controllable router of interlayer excitons. 2019, arXiv:1911.12061. arXiv.org e-Print archive. https://arxiv.org/abs/1911.12061 (accessed May 11, 2020).

  112. Li, W. J.; Lu, X.; Dubey, S.; Devenica, L.; Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 2020, 19, 624–629.

    CAS  Google Scholar 

  113. Jiang, C. Y.; Rasmita, A.; Xu, W. G.; Imamoğlu, A.; Xiong, Q. H.; Gao, W. B. Optical spin pumping induced pseudomagnetic field in two-dimensional heterostructures. Phys. Rev. B 2018, 98, 241410.

    CAS  Google Scholar 

  114. Zhang, J.; Du, L. J.; Feng, S.; Zhang, R. W.; Cao, B. C.; Zou, C. J.; Chen, Y.; Liao, M. Z.; Zhang, B. L.; Yang, S. A. et al. Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route. Nat. Commun. 2019, 10, 4226.

    Google Scholar 

  115. Jin, C. H.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994–1003.

    CAS  Google Scholar 

  116. Schaibley, J. R.; Rivera, P.; Yu, H. Y.; Seyler, K. L.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xu, X. D. Directional interlayer spin-valley transfer in two-dimensional heterostructures. Nat. Commun. 2016, 7, 13747.

    CAS  Google Scholar 

  117. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    CAS  Google Scholar 

  118. Zhang, X. X.; You, Y. M.; Zhao, S. Y. F.; Heinz, T. F. Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 2015, 115, 257403.

    Google Scholar 

  119. Smoleński, T.; Goryca, M.; Koperski, M.; Faugeras, C.; Kazimierczuk, T.; Bogucki, A.; Nogajewski, K.; Kossacki, P.; Potemski, M. Tuning valley polarization in a WSe2 monolayer with a tiny magnetic field. Phys. Rev. X 2016, 6, 021024.

    Google Scholar 

  120. Zhu, H. M.; Wang, J.; Gong, Z. Z.; Kim, Y. D.; Hone, J.; Zhu, X. Y. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 2017, 17, 3591–3598.

    CAS  Google Scholar 

  121. Ji, Z. H.; Hong, H.; Zhang, J.; Zhang, Q.; Huang, W.; Cao, T.; Qiao, R. X.; Liu, C.; Liang, J.; Jin, C. H. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 2017, 11, 12020–12026.

    CAS  Google Scholar 

  122. Shayan, K.; Liu, N.; Cupo, A.; Ma, Y. C.; Luo, Y.; Meunier, V.; Strauf, S. Magnetic proximity coupling of quantum emitters in WSe2 to van der Waals ferromagnets. Nano Lett. 2019, 19, 7301–7308.

    CAS  Google Scholar 

  123. Norden, T.; Zhao, C.; Zhang, P. Y.; Sabirianov, R.; Petrou, A.; Zeng, H. Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat. Commun. 2019, 10, 4163.

    Google Scholar 

  124. Zhong, D.; Seyler, K. L.; Linpeng, X. Y.; Cheng, R.; Sivadas, N.; Huang, B.; Schmidgall, E.; Taniguchi, T.; Watanabe, K.; McGuire, M. A. et al. van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 2017, 3, e1603113.

    Google Scholar 

  125. Scharf, B.; Xu, G. F.; Matos-Abiague, A.; Zutic, I. Magnetic proximity effects in transition-metal dichalcogenides: Converting excitons. Phys. Rev. Lett. 2017, 119, 127403.

    Google Scholar 

  126. Zhao, C.; Norden, T.; Zhang, P. Y.; Zhao, P. Q.; Cheng, Y. C.; Sun, F.; Parry, J. P.; Taheri, P.; Wang, J. Q.; Yang, Y. H. et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol. 2017, 12, 757–762.

    CAS  Google Scholar 

  127. Zhang, Q. Y.; Yang, S. A.; Mi, W. B.; Cheng, Y. C.; Schwingenschlögl, U. Large spin-valley polarization in monolayer MoTe2 on top of EuO(111). Adv. Mater. 2016, 28, 959–966.

    CAS  Google Scholar 

  128. Lyons, T. P.; Gillard, D.; Molina-Sanchez, A.; Misra, A.; Withers, F.; Keatley, P. S.; Kozikov, A.; Taniguchi, T.; Watanabe, K.; Novoselov, K. S. et al. Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures. 2020, arXiv:2004.04073. arXiv.org e-Print archive. https://arxiv.org/abs/2004.04073 (accessed Apr 29, 2020).

  129. Du, L. J.; Zhang, Q.; Gong, B. C.; Liao, M. Z.; Zhu, J. Q.; Yu, H.; He, R.; Liu, K.; Yang, R.; Shi, D. X. et al. Robust spin-valley polarization in commensurate MoS2/graphene heterostructures. Phys. Rev. B 2018, 97, 115445.

    CAS  Google Scholar 

  130. Lorchat, E.; Azzini, S.; Chervy, T.; Taniguchi, T.; Watanabe, K.; Ebbesen, T. W.; Genet, C.; Berciaud, S. Room-temperature valley polarization and coherence in transition metal dichalcogenide-graphene van der Waals Heterostructures. ACS Photonics 2018, 5, 5047–5054.

    CAS  Google Scholar 

  131. Förg, M.; Colombier, L.; Patel, R. K.; Lindlau, J.; Mohite, A. D.; Yamaguchi, H.; Glazov, M. M.; Hunger, D.; Högele, A. Cavity-control of interlayer excitons in van der Waals heterostructures. Nat. Commun. 2019, 10, 3697.

    Google Scholar 

  132. Montblanch, A. R. P.; Kara, D. M.; Paradisanos, I.; Purser, C. M.; Feuer, M. S. G.; Alexeev, E. M.; Stefan, L.; Qin, Y.; Blei, M.; Wang, G. et al. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. 2020, arXiv:2005.02416. arXiv.org e-Print archive. u]u]https://arxiv.org/abs/2005.02416 (accessed May 11, 2020).

  133. Kim, J.; Jin, C. H.; Chen, B.; Cai, H.; Zhao, T.; Lee, P.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 2017, 3, e1700518.

    Google Scholar 

  134. Beyer, H.; Rohde, G.; Grubisic Cabo, A.; Stange, A.; Jacobsen, T.; Bignardi, L.; Lizzit, D.; Lacovig, P.; Sanders, C. E.; Lizzit, S. et al. 80% valley polarization of free carriers in singly oriented single-layer WS2 on Au(111). Phys. Rev. Lett. 2019, 123, 236802.

    CAS  Google Scholar 

  135. Jin, C. H.; Kim, J.; Utama, M. I. B.; Regan, E. C.; Kleemann, H.; Cai, H.; Shen, Y. X.; Shinner, M. J.; Sengupta, A.; Watanabe, K. et al. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures. Science 2018, 360, 893–896.

    CAS  Google Scholar 

  136. Qu, F. Y.; Bragança, H.; Vasconcelos, R.; Liu, F. J.; Xie, S. J.; Zeng, H. Controlling valley splitting and polarization of dark- and bi-excitons in monolayer WS2 by a tilted magnetic field. 2D Mater. 2019, 6, 045014.

    CAS  Google Scholar 

  137. Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    CAS  Google Scholar 

  138. Seo, J.; Kim, D. Y.; An, E. S.; Kim, K.; Kim, G. Y.; Hwang, S. Y.; Kim, D. W.; Jang, B. G.; Kim, H.; Eom, G. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 2020, 6, eaay8912.

    Google Scholar 

  139. Wang, Z. F.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Shan, J.; Mak, K. F. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019, 574, 76–80.

    CAS  Google Scholar 

  140. Onida, G.; Reining, L.; Rubio, A. Electronic excitations: Density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 2002, 74, 601–659.

    CAS  Google Scholar 

  141. Deilmann, T.; Rohlfing, M.; Wurstbauer, U. Light-matter interaction in van der Waals hetero-structures. J. Phys.: Condens. Matter 2020, 32, 333002.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Singapore National Research Foundation through its Competitive Research Program (CRP Award No. NRF-CRP21-2018-0007), Singapore Ministry of Education (MOE2016-T2-2-077, MOE2016-T2-1-163 and MOE2016-T3-1-006 (S)), and A*Star QTE programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-bo Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmita, A., Gao, Wb. Opto-valleytronics in the 2D van der Waals heterostructure. Nano Res. 14, 1901–1911 (2021). https://doi.org/10.1007/s12274-020-3036-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3036-x

Keywords

Navigation