Skip to main content
Log in

In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) by near-infrared (NIR) irradiation is a promising technique for treating various cancers. Here, we reported the development of free-standing wafer-scale Au nanosheets (NSs) that exhibited an impressive PDT effect. The Au NSs were synthesized by ionic layer epitaxy at the air-water interface with a uniform thickness in the range from 2 to 8.5 nm. These Au NSs were found very effective in generating singlet oxygen under NIR irradiation. In vitro cellular study showed that the Au NSs had very low cytotoxicity and high PDT efficiency due to their uniform 2D morphology. Au NSs could kill cancer cells after 5 min NIR irradiation with little heat generation. This performance is comparable to using 10 times mass loading of Au nanoparticles (NPs). This work suggests that two-dimensional (2D) Au NSs could be a new type of biocompatible nanomaterial for PDT of cancer with an extraordinary photon conversion and cancer cell killing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    Article  CAS  Google Scholar 

  2. Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535–545.

    Article  CAS  Google Scholar 

  3. Cosgarea, R.; Susan, M.; Crisan, M.; Senila, S. Photodynamic therapy using topical 5-aminolaevulinic acid vs. surgery for basal cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 980–984.

    Article  CAS  Google Scholar 

  4. Lee, P. K.; Kloser, A. Current methods for photodynamic therapy in the US: Comparison of MAL/PDT and ALA/PDT. J. Drugs Dermatol. 2013, 12, 925–930.

    CAS  Google Scholar 

  5. Rhodes, L. E.; de Rie, M. A.; Leifsdottir, R.; Yu, R. C.; Bachmann, I.; Goulden, V.; Wong, G. A.; Richard, M. A.; Anstey, A.; Wolf, P. Five-year follow-up of a randomized, prospective trial of topical methyl aminolevulinate photodynamic therapy vs surgery for nodular basal cell carcinoma. Arch. Dermatol. 2007, 143, 1131–1136.

    Article  CAS  Google Scholar 

  6. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316.317.

    Article  CAS  Google Scholar 

  7. Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327.

    Article  CAS  Google Scholar 

  8. Cheng, Y.; Samia, A. C.; Meyers, J. D.; Panagopoulos, I.; Fei, B. W.; Burda, C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 2008, 130, 10643–10647.

    Article  CAS  Google Scholar 

  9. Hone, D. C.; Walker, P. I.; Evans-Gowing, R.; FitzGerald, S.; Beeby, A.; Chambrier, I.; Cook, M. J.; Russell, D. A. Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy. Langmuir 2002, 18, 2985–2987.

    Article  CAS  Google Scholar 

  10. Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

    Article  CAS  Google Scholar 

  11. Chen, H. J.; Ming, T.; Zhao, L.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Plasmon-molecule interactions. Nano Today 2010, 5, 494–505.

    Article  CAS  Google Scholar 

  12. Sapsford, K. E.; Berti, L.; Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew. Chem., Int. Ed. 2006, 45, 4562–4589.

    Article  CAS  Google Scholar 

  13. Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV.Vis spectra. Anal. Chem. 2007, 79, 4215–4221.

    Article  CAS  Google Scholar 

  14. Foss, Jr., C. A.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape. J. Phys. Chem. 1994, 98, 2963–2971.

    Article  CAS  Google Scholar 

  15. Vankayala, R.; Kuo, C. L.; Sagadevan, A.; Chen, P. H.; Chiang, C. S.; Hwang, K. C. Morphology dependent photosensitization and formation of singlet oxygen (1Δg) by gold and silver nanoparticles and its application in cancer treatment. J. Mater. Chem. B 2013, 1, 4379–4387.

    Article  CAS  Google Scholar 

  16. Wang, F.; Seo, J. H.; Luo, G. F.; Starr, M. B.; Li, Z. D.; Geng, D. L.; Yin, X.; Wang, S. Y.; Fraser, D. G.; Morgan, D. et al. Nanometrethick single-crystalline nanosheets grown at the water-air interface. Nat. Commun. 2016, 7, 10444.

    Article  CAS  Google Scholar 

  17. Yin, X.; Chen, Q. Y.; Tian, P.; Zhang, P.; Zhang, Z. Y.; Voyles, P. M.; Wang, X. D. Ionic layer epitaxy of nanometer-thick palladium nanosheets with enhanced electrocatalytic properties. Chem. Mater. 2018, 30, 3308–3314.

    Article  CAS  Google Scholar 

  18. Redmond, R. W.; Gamlin, J. N. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiolgy 1999, 70, 391–475.

    Article  CAS  Google Scholar 

  19. Yin, X.; Shi, Y. Q.; Wei, Y. B.; Joo, Y.; Gopalan, P.; Szlufarska, I.; Wang, X. D. Unit cell level thickness control of single-crystalline zinc oxide nanosheets enabled by electrical double-layer confinement. Langmuir 2017, 33, 7708–7714.

    Article  CAS  Google Scholar 

  20. Jacquemain, D.; Wolf, S. G.; Leveiller, F.; Deutsch, M.; Kjaer, K.; Als-Nielsen, J.; Lahav, M.; Leiserowitz, L. Two-dimensional crystallography of amphiphilic molecules at the air-water interface. Angew. Chem., Int. Ed. 1992, 31, 130–152.

    Article  Google Scholar 

  21. Jacquemain, D.; Leveiller, F.; Weinbach, S. P.; Lahav, M.; Leiserowitz, L.; Kjaer, K.; Als-Nielsen, J. Crystal structure of self-aggregates of insoluble aliphatic amphiphilic molecules at the air-water interface. An X-ray synchrotron study. J. Am. Chem. Soc. 1991, 113, 7684–7691.

    Article  CAS  Google Scholar 

  22. He, Y. Q.; Liu, S. P.; Kong, L.; Liu, Z. F. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2005, 61, 2861–2866.

    Article  CAS  Google Scholar 

  23. Chen, Y.; Gu, X.; Nie, C. G.; Jiang, Z. Y.; Xie, Z. X.; Lin, C. J. Shape controlled growth of gold nanoparticles by a solution synthesis. Chem. Commun. 2005, 4181–4183.

    Google Scholar 

  24. Wang, S. G.; Lu, W. T.; Tovmachenko, O.; Rai, U. S.; Yu, H. T.; Ray, P. C. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett. 2008, 463, 145–149.

    Article  CAS  Google Scholar 

  25. Choi, K.; Riviere, J. E.; Monteiro-Riviere, N. A. Protein corona modulation of hepatocyte uptake and molecular mechanisms of gold nanoparticle toxicity. Nanotoxicology 2017, 11, 64–75.

    Article  CAS  Google Scholar 

  26. Flors, C.; Fryer, M. J.; Waring, J.; Reeder, B.; Bechtold, U.; Mullineaux, P. M.; Nonell, S.; Wilson, M. T.; Baker, N. R. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green®. J. Exp. Bot. 2006, 57, 1725–1734.

    Article  CAS  Google Scholar 

  27. Gollmer, A.; Arnbjerg, J.; Blaikie, F. H.; Pedersen, B. W.; Breitenbach, T.; Daasbjerg, K.; Glasius, M.; Ogilby, P. R. Singlet Oxygen Sensor Green®: Photochemical behavior in solution and in a mammalian cell. Photochem. Photobiol. 2011, 87, 671–679.

    Article  CAS  Google Scholar 

  28. Ragas, X.; Jimenez-Banzo, A.; Sanchez-Garcia, D.; Batllori, X.; Nonell, S. Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green®. Chem. Commun. 2009, 2920–2922.

    Google Scholar 

  29. Satoh, A. Y.; Trosko, J. E.; Masten, S. J. Methylene blue dye test for rapid qualitative detection of hydroxyl radicals formed in a fenton's reaction aqueous solution. Environ. Sci. Technol. 2007, 41, 2881–2887.

    Article  CAS  Google Scholar 

  30. Zhang, C.; Zhao, K. L.; Bu, W. B.; Ni, D. L.; Liu, Y. Y.; Feng, J. W.; Shi, J. L. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem., Int. Ed. 2015, 54, 1770–1774.

    Article  CAS  Google Scholar 

  31. Kuo, W. S.; Chang, Y. T.; Cho, K. C.; Chiu, K. C.; Lien, C. H.; Yeh, C. S.; Chen, S. J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 2012, 33, 3270–3278.

    Article  CAS  Google Scholar 

  32. Vankayala, R.; Huang, Y. K.; Kalluru, P.; Chiang, C. S.; Hwang, K. C. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small 2014, 10, 1612–1622.

    Article  CAS  Google Scholar 

  33. Zhao, T. T.; Shen, X. Q.; Li, L.; Guan, Z. P.; Gao, N. Y.; Yuan, P. Y.; Yao, S. Q.; Xu, Q. H.; Xu, G. Q. Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. Nanoscale 2012, 4, 7712–7719.

    Article  CAS  Google Scholar 

  34. Vankayala, R.; Lin, C. C.; Kalluru, P.; Chiang, C. S.; Hwang, K. C. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infrared light. Biomaterials 2014, 35, 5527–5538.

    Article  CAS  Google Scholar 

  35. Vijayaraghavan, P.; Liu, C. H.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv. Mater. 2014, 26, 6689–6695.

    Article  CAS  Google Scholar 

  36. Lin, J.; Wang, S. J.; Huang, P.; Wang, Z.; Chen, S. H.; Niu, G.; Li, W. W.; He, J.; Cui, D. X.; Lu, G. M. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329.

    Article  CAS  Google Scholar 

  37. Kim, Y. K.; Na, H. K.; Kim, S.; Jang, H. J.; Chang, S. J.; Min, D. H. One-pot synthesis of multifunctional Au@ graphene oxide nanocolloid core@ Shell nanoparticles for raman bioimaging, photothermal, and photodynamic therapy. Small 2015, 11, 2527–2535.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Army Research Office (No. W911NF-16-1-0198), the National Science Foundation (No. DMR-1709025), and National Institutes of Health (Nos. R01EB0213360, 1R21EB027857, and P30CA014520). Diffraction data was collected at ChemMatCARS Sector 15, which is principally supported by the Divisions of Chemistry and Materials Research, National Science Foundation, under grant number NSF/CHE-1834750. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE (No. DEAC02-06CH11357).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weibo Cai or Xudong Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ni, D., Wang, F. et al. In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets. Nano Res. 13, 3217–3223 (2020). https://doi.org/10.1007/s12274-020-2990-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2990-7

Keywords

Navigation