Skip to main content
Log in

A library of carbon-supported ultrasmall bimetallic nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Small-sized bimetallic nanoparticles that possess numerous accessible metal sites and optimal geometric/electronic structures show great promise for advanced synergetic catalysis but remain synthetic challenge so far. Here, an universial synthetic method is developed for building a library of bimetallic nanoparticles on mesoporous sulfur-doped carbon supports, consisting of 24 combinations of 3 noble metals (that is, Pt, Rh, Ir) and 7 other metals, with average particle sizes ranging from 0.7 to 1.4 nm. The synthetic strategy is based on the strong metal-support interaction arising from the metal-sulfur bonding, which suppresses the metal aggregation during the H2-reduction at 700 °C and ensure the formation of small-sized and alloyed bimetallic nanoparticles. The enhanced catalytic properties of the ultrasmall bimetallic nanoparticles are demonstrated in the dehydrogenation of propane at high temperature and oxidative dehydrogenations of N-heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, O. S.; Gates, B. C. Supported bimetallic cluster catalysts. Ind. Eng. Chem. Res.2003, 42, 1571–1587.

    Article  CAS  Google Scholar 

  2. Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev.2015, 115, 28–126.

    Article  CAS  Google Scholar 

  3. Singh, A. K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem2013, 5, 652–676.

    Article  CAS  Google Scholar 

  4. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res.2013, 46, 1740–1748.

    Article  CAS  Google Scholar 

  5. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev.2018, 118, 4981–5079.

    Article  CAS  Google Scholar 

  6. Mitchell, S.; Vorobyeva, E.; Pérez-Ramírez, J. Reactivity of single-atom heterogeneous catalysts: Unique and multifaceted. Angew. Chem., Int. Ed.2018, 57, 15316–15329.

    Article  CAS  Google Scholar 

  7. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science2016, 352, 797–800.

    Article  CAS  Google Scholar 

  8. El-Sayed, M. A. Small is different: Shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res.2004, 37, 326–333.

    Article  CAS  Google Scholar 

  9. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science2018, 359, 1489–1494.

    Article  CAS  Google Scholar 

  10. Toshima, N. Polymer-protected bimetallic clusters. Preparation and application to catalysis. J. Macromol. Sci. A - Chem.1990, 27, 1225–1238.

    Article  Google Scholar 

  11. Zhang, H. J.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater.2012, 11, 49–52.

    Article  Google Scholar 

  12. Kulkarni, A.; Gates, B. C. Spectroscopic elucidation of first steps of supported bimetallic cluster formation. Angew. Chem., Int. Ed.2009, 48, 9697–9700.

    Article  CAS  Google Scholar 

  13. Chotisuwan, S.; Wittayakun, J.; Lobo-Lapidus, R. J.; Gates, B. C. MGO-supported cluster catalysts with Pt-Ru interactions prepared from Pt3Ru6(CO)213-H)(μ-h)3. Catal. Lett.2007, 115, 99–107.

    Article  CAS  Google Scholar 

  14. Fung, A. S.; Kelley, M. J.; Koningsberger, D. C.; Gates, B. C. γ-Al2O3-supported Re-Pt cluster catalyst prepared from [Re2Pt(CO)12]: Characterization by extended X-ray absorption fine structure spectroscopy and catalysis of methylcyclohexane dehydrogenation. J. Am. Chem. Soc.1997, 119, 5877–5887.

    Article  CAS  Google Scholar 

  15. Yang, J.; He, D. S.; Chen, W. X.; Zhu, W.; Zhang, H.; Ren, S.; Wang, X.; Yang, Q. H.; Wu, Y. E.; Li, Y. D. Bimetallic Ru-Co clusters derived from a confined alloying process within zeolite-imidazolate frameworks for efficient NH3 decomposition and synthesis. ACS Appl. Mater. Interfaces2017, 9, 39450–39455.

    Article  CAS  Google Scholar 

  16. Iida, T.; Zanchet, D.; Ohara, K.; Wakihara, T.; Román-Leshkov, Y. Concerted bimetallic nanocluster synthesis and encapsulation via induced zeolite framework demetallation for shape and substrate selective heterogeneous catalysis. Angew. Chem., Int. Ed.2018, 57, 6454–6458.

    Article  CAS  Google Scholar 

  17. Mao, J. J.; Li, J.; Pei, J. J.; Liu, Y.; Wang, D. S.; Li, Y. D. Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today2019, 26, 164–175.

    Article  CAS  Google Scholar 

  18. Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science2017, 358, 1427–1430.

    Article  CAS  Google Scholar 

  19. Ding, K. L.; Cullen, D. A.; Zhang, L. B.; Cao, Z.; Roy, A. D.; Ivanov, I. N.; Cao, D. M. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science2018, 362, 560–564.

    Article  CAS  Google Scholar 

  20. Wang, L.; Chen, M. X.; Yan, Q. Q.; Xu, S. L.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv.2019, 5, eaax6322.

  21. Yan, Q. Q.; Wu, D. X.; Chu, S. Q.; Chen, Z. Q.; Lin, Y.; Chen, M. X.; Zhang, J.; Wu, X. J.; Liang, H. W. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun.2019, 10, 4977.

    Article  Google Scholar 

  22. Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun.2016, 7, 10922.

    Article  CAS  Google Scholar 

  23. Liu, B.; Yao, H. Q.; Song, W. Q.; Jin, L.; Mosa, I. M.; Rusling, J. F.; Suib, S. L.; He, J. Ligand-free noble metal nanocluster catalysts on carbon supports via “soft” nitriding. J. Am. Chem. Soc.2016, 138, 4718–4721.

    Article  CAS  Google Scholar 

  24. Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun.2016, 7, 13638.

    Article  CAS  Google Scholar 

  25. Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv.2018, 4, eaat0788.

    Article  CAS  Google Scholar 

  26. Liang, H. W.; Brüller, S.; Dong, R. H.; Zhang, J.; Feng, X. L.; Müllen, K. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun.2015, 6, 7992.

    Article  CAS  Google Scholar 

  27. Chen, L.; Cooper, A. C.; Pez, G. P.; Cheng, H. S. Mechanistic study on hydrogen spillover onto graphitic carbon materials. J. Phys. Chem. C2007, 111, 18995–19000.

    Article  CAS  Google Scholar 

  28. Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; VandeVondele, J.; Ekinci, Y.; van Bokhoven, J. A. Catalyst support effects on hydrogen spillover. Nature2017, 541, 68–71.

    Article  CAS  Google Scholar 

  29. Zhang, X.; Cui, G. Q.; Feng, H. S.; Chen, L. F.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L. R.; Hong, S.; Wei, M. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun.2019, 10, 5812.

    Article  CAS  Google Scholar 

  30. Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed.2016, 55, 8319–8323.

    Article  CAS  Google Scholar 

  31. Takahashi, M.; Koizumi, H.; Chun, W. J.; Kori, M.; Imaoka, T.; Yamamoto, K. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons. Sci. Adv.2017, 3, e1700101.

    Article  Google Scholar 

  32. Wang, W. H.; Tian, X. L.; Chen, K.; Cao, G. Y. Synthesis and characterization of Pt-Cu bimetallic alloy nanoparticles by reverse micelles method. Colloids Surf. A2006, 273, 35–42.

    Article  CAS  Google Scholar 

  33. Kim, N. R.; Shin, K.; Jung, I.; Shim, M.; Lee, H. M. Ag-Cu bimetallic nanoparticles with enhanced resistance to oxidation: A combined experimental and theoretical study. J. Phys. Chem. C2014, 118, 26324–26331.

    Article  CAS  Google Scholar 

  34. Akporiaye, D.; Jensen, S.; Olsbye, U.; Rohr, F.; Rytter, E.; Rønnekleiv, M.; Spjelkavik, A. I. A novel, highly efficient catalyst for propane dehydrogenation. Ind. Eng. Chem. Res.2001, 40, 4741–4748.

    Article  CAS  Google Scholar 

  35. Shen, J. Y.; Hill, J. M.; Watwe, R. M.; Spiewak, B. E.; Dumesic, J. A. Microcalorimetric, infrared spectroscopic, and DFT studies of ethylene adsorption on Pt/SiO2 and Pt-Sn/SiO2 catalysts. J. Phys. Chem. B1999, 103, 3923–3934.

    Article  CAS  Google Scholar 

  36. Siri, G. J.; Ramallo-López, J. M.; Casella, M. L.; Fierro, J. L. G.; Requejo, F. G.; Ferretti, O. XPS and EXAFS study of supported PtSn catalysts obtained by surface organometallic chemistry on metals: Application to the isobutane dehydrogenation. Appl. Catal. A2005, 278, 239–249.

    Article  CAS  Google Scholar 

  37. Cui, X.; Li, Y.; Bachmann, S.; Scalone, M.; Surkus, A. E.; Junge, K.; Topf, C.; Beller, M. Synthesis and characterization of iron-nitrogen-doped graphene/core-shell catalysts: Efficient oxidative dehydrogenation of N-heterocycles. J. Am. Chem. Soc.2015, 137, 10652–10658.

    Article  CAS  Google Scholar 

  38. Chang, J. R.; Chang, S. L.; Lin, T. B. γ-Alumina-supported Pt catalysts for aromatics reduction: A structural investigation of sulfur poisoning catalyst deactivation. J. Catal.1997, 169, 338–346.

    Article  CAS  Google Scholar 

  39. Chang, J. R.; Chang, S. L. Catalytic properties of γ-alumina- supported Pt catalysts for tetralin hydrogenation: Effects of sulfur-poisoning and hydrogen reactivation. J. Catal.1998, 176, 42–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2018YFA0702001 and 2019YFA0307900), the National Natural Science Foundation of China (Nos. 21671184, 11874334, and 21872128), Youth Innovation Promotion Association CAS (No. 2020458), the Fundamental Research Funds for the Central Universities (Nos. WK2060190103 and WK2060030030), the Joint Funds from Hefei National Synchrotron Radiation Laboratory (No. KY2060000107), and the Recruitment Program of Thousand Youth Talents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Lin, Kun Qian or Hai-Wei Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SL., Shen, SC., Wei, ZY. et al. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Res. 13, 2735–2740 (2020). https://doi.org/10.1007/s12274-020-2920-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2920-8

Keywords

Navigation