Skip to main content
Log in

Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Encapsulating well-defined nanoparticles (NPs) into metal–organic frameworks (MOFs) to form core–shell structures not only combines their properties, but may also provide synergistic functionality. Much research attention has been focused on applying core–shell NP@MOF structures to gas storage and sensing, luminescence, lithium ion batteries, selective catalysis, and cascade reactions; however, their application as photocatalysts has been reported much more rarely. Herein, we report the design of a new core–shell structure composed of semiconductor CdS NPs as the core and ZIF-8 as the shell. Both single-core–shell and multiple-core–shell CdS@ZIF-8 were synthesized by varying the concentrations of the ZIF-8 precursor. Photocatalytic hydrogen generation from formic acid over CdS@ZIF-8 demonstrated that core–shell CdS@ZIF-8 structures exhibit increased photocatalytic selectivity for H2 generation from formic acid compared with pure CdS NPs. Furthermore, the concentration of CO in the products was significantly decreased, which benefits the application of CdS@ZIF-8 to proton-exchange membrane fuel cells. Our results provide guidance for the development of new photocatalysts based on NP@MOF core–shell materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal–organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 2013, 113, 734–777.

    Article  Google Scholar 

  2. Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

    Article  Google Scholar 

  3. Zhu, Q. L.; Xu, Q. Metal–organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.

    Article  Google Scholar 

  4. Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core–shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.

    Article  Google Scholar 

  5. Chen, L. Y.; Peng, Y.; Wang, H.; Gu, Z. Z.; Duan, C. Y. Synthesis of Au@ZIF-8 single- or multi-core–shell structures for photocatalysis. Chem. Commun. 2014, 50, 8651–8654.

    Article  Google Scholar 

  6. Hu, P.; Zhuang, J.; Chou, L. Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y. C.; Tsung, C. K. Surfactant-directed atomic to mesoscale alignment: Metal nanocrystals encased individually in single-crystalline porous nanostructures. J. Am. Chem. Soc. 2014, 136, 10561–10564.

    Article  Google Scholar 

  7. Dai, H. M.; Xia, B. Q.; Wen, L.; Du, C.; Su, J.; Luo, W.; Cheng, G. Z. Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid. Appl. Catal. B 2015, 165, 57–62.

    Article  Google Scholar 

  8. Li, S. Z.; Huo, F. W. Hybrid crystals comprising metal–organic frameworks and functional particles: Synthesis and applications. Small 2014, 10, 4371–4378.

    Google Scholar 

  9. Chen, X. F.; Ding, N.; Zang, H.; Yeung, H.; Zhao, R. S.; Cheng, C. G.; Liu, J. H.; Chan, T. W. D. Fe3O4@MOF core–shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples. J Chromatogr. A 2013, 1304, 241–245.

    Article  Google Scholar 

  10. Ke, F.; Qiu, L. G.; Zhu, J. F. Fe3O4@MOF core–shell magnetic microspheres as excellent catalysts for the Claisen–Schmidt condensation reaction. Nanoscale 2014, 6, 1596–1601.

    Article  Google Scholar 

  11. Ke, F.; Qiu, L. G.; Yuan, Y. P.; Jiang, X.; Zhu, J. F. Fe3O4@MOF core–shell magnetic microspheres with a designable metal–organic framework shell. J. Mater. Chem. 2012, 22, 9497–9500.

    Article  Google Scholar 

  12. Lee, H. J.; Cho, W.; Oh, M. Advanced fabrication of metal–organic frameworks: Template-directed formation of polystyrene@ZIF-8 core–shell and hollow ZIF-8 microspheres. Chem. Commun. 2012, 48, 221–223.

    Article  Google Scholar 

  13. Li, A. L.; Ke, F.; Qiu, L. G.; Jiang, X.; Wang, Y. M.; Tian, X. Y. Controllable synthesis of metal–organic framework hollow nanospheres by a versatile step-by-step assembly strategy. CrystEngComm 2013, 15, 3554–3559.

    Article  Google Scholar 

  14. Song, J.; Luo, Z.; Britt, D. K.; Furukawa, H.; Yaghi, O. M.; Hardcastle, K. I.; Hill, C. L. A multiunit catalyst with synergistic stability and reactivity: A polyoxometalate-metal organic framework for aerobic decontamination. J. Am. Chem. Soc. 2011, 133, 16839–16846.

    Article  Google Scholar 

  15. Sun, C. Y.; Liu, S. X.; Liang, D. D.; Shao, K. Z.; Ren, Y. H.; Su, Z. M. Highly stable crystalline catalysts based on a microporous metal–organic framework and polyoxometalates. J. Am. Chem. Soc. 2009, 131, 1883–1888.

    Article  Google Scholar 

  16. Koh, K.; Wong-Foy, A. G.; Matzger, A. J. MOF@MOF: Microporous core–shell architectures. Chem. Commun. 2009, 6162–6164.

    Google Scholar 

  17. Zhuang, J.; Chou, L. Y.; Sneed, B. T.; Cao, Y.; Hu, P.; Feng, L.; Tsung, C. K. Surfactant-mediated conformal overgrowth of core–shell metal–organic framework materials with mismatched topologies. Small 2015, 11, 5551–5555.

    Article  Google Scholar 

  18. Li, T.; Sullivan, J. E.; Rosi, N. L. Design and preparation of a core–shell metal–organic framework for selective CO2 capture. J. Am. Chem. Soc. 2013, 135, 9984–9987.

    Article  Google Scholar 

  19. He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core–shell noble-metal@metalorganic- framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

    Article  Google Scholar 

  20. Yang, D.; Yang, G. X.; Gai, S. L.; He, F.; An, G. H.; Dai, Y. L.; Lv, R. C.; Yang, P. P. Au25 cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale 2015, 7, 19568–19578.

    Article  Google Scholar 

  21. Chen, R.; Zhang, J. F.; Wang, Y.; Chen, X. F.; Zapien, J. A.; Lee, C. S. Graphitic carbon nitride nanosheet@metal–organic framework core–shell nanoparticles for photo-chemo combination therapy. Nanoscale 2015, 7, 17299–17305.

    Article  Google Scholar 

  22. Yue, H. Y.; Shi, Z. P.; Wang, Q. X.; du, T.; Ding, Y. M.; Zhang, J.; Huo, N. N.; Yang, S. T. In situ preparation of cobalt doped ZnO@C/CNT composites by the pyrolysis of a cobalt doped MOF for high performance lithium ion batteries. RSC Adv. 2015, 5, 75653–75658.

    Article  Google Scholar 

  23. Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semihydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–108893.

    Article  Google Scholar 

  24. Yang, Y. F.; Wang, F. W.; Yang, Q. H.; Hu, Y. L.; Yan, H.; Chen, Y. Z.; Liu, H. R.; Zhang, G. Q.; Lu, J. L.; Jiang, H. L. et al. Hollow metal–organic framework nanospheres via emulsion-based interfacial synthesis and their application in size-selective catalysis. ACS Appl. Mater. Interfaces 2014, 6, 18163–18171.

    Article  Google Scholar 

  25. Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core–shell palladium nanoparticle@metal–organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.

    Article  Google Scholar 

  26. Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.

    Article  Google Scholar 

  27. Zhao, K.; Zhao, S. L.; Qi, J.; Yin, H. J.; Gao, C.; Khattak, A. M.; Wu, Y. J.; Iqbal, A.; Wu, L.; Gao, Y. et al. Cu2O clusters grown on TiO2 nanoplates as efficient photocatalysts for hydrogen generation. Inorg. Chem. Front. 2016, 3, 488–493.

    Article  Google Scholar 

  28. Zhao, K.; Qi, J.; Yin, H. J.; Wang, Z. M.; Zhao, S. L.; Ma, X.; Wan, J. W.; Chang, L.; Gao, Y.; Yu, R. B. et al. Efficient water oxidation under visible light by tuning surface defects on ceria nanorods. J. Mater. Chem. A 2015, 3, 20465–20470.

    Article  Google Scholar 

  29. Johnson, T. C.; Morris, D. J.; Wills, M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem. Soc. Rev. 2010, 39, 81–88.

    Article  Google Scholar 

  30. Zhu, Q. L.; Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 2015, 8, 478–512.

    Article  Google Scholar 

  31. Grasemann, M.; Laurenczy, G. Formic acid as a hydrogen source-recent developments and future trends. Energy Environ. Sci. 2012, 5, 8171–8181.

    Article  Google Scholar 

  32. Li, X. H.; Li, J. X.; Li, G. D.; Liu, D. P.; Chen, J. S. Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres. Chem.—Eur. J. 2007, 13, 8754–8761.

    Article  Google Scholar 

  33. Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.

    Article  Google Scholar 

  34. Guo, H. L.; Zhu, Y. Z.; Wang, S.; Su, S. Q.; Zhou, L.; Zhang, H. J. Combining coordination modulation with acid-base adjustment for the control over size of metal–organic frameworks. Chem. Mater. 2012, 24, 444–450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Wang or Dongsheng Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Chai, Z., Deng, X. et al. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 9, 2729–2734 (2016). https://doi.org/10.1007/s12274-016-1161-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1161-3

Keywords

Navigation