Skip to main content

Advertisement

Log in

Stable core–shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution

  • Article
  • Focus Issue: Surfaces and Interfaces in Electronics and Photonics
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Compared to single metal–organic framework (MOF), core–shell MOF crystals are more promising due to their special structure and unique properties. Herein, since ZIF-8 and ZIF-67 have the same topology, crystal growth method is used to synthesize core–shell crystals ZIF-8@ZIF-67, which exhibit far superior light adsorption, charge separation capabilities, and excellent stability than ZIF-8 and ZIF-67. The photocatalytic H2 generation rate for ZIF-8@ZIF-67 (1:1) is about 17 times higher than that of pure ZIF-67 without cocatalyst loading under same reaction conditions. Through a series of characterizations, two connection modes between ZIF-8 and ZIF-67 frames in core–shell contact interface are proposed, and the corresponding photocatalytic mechanism is elucidated. Transient photovoltaic curve reveals the unique transfer paths of electrons through contact interface, which leads to efficient charge separation compared with other ZIF materials. This study provides a novel and simple strategy to synthesis high effective and stable core–shell ZIF photocatalyst for photodegradation and hydrogen evolution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 1

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this article.

References

  1. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127 (2003)

    Article  CAS  Google Scholar 

  2. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469 (2002)

    Article  CAS  Google Scholar 

  3. M.K. Mahto, D. Samanta, S. Konar, H. Kalita, A. Pathak, N, S doped carbon dots-plasmonic Au nanocomposites for visible-light photocatalytic reduction of nitroaromatics. J. Mater. Res. 33, 3906 (2018)

    Article  CAS  Google Scholar 

  4. Y. Xie, Y. Zhuo, S. Liu, Y. Lin, D. Zuo, X. Wu, C. Li, P.K. Wong, Ternary g-C3N4/ZnNCN@ZIF-8 hybrid photocatalysts with robust interfacial interactions and enhanced CO2 reduction performance. Sol. RRL 4, 1900440 (2020)

    Article  CAS  Google Scholar 

  5. X. Ma, R.J. Swaidan, Y. Wang, C.-E. Hsiung, Y. Han, I. Pinnau, Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation. ACS Appl. Nano Mater. 1, 3541 (2018)

    Article  CAS  Google Scholar 

  6. Y. Hu, Z. Liu, J. Xu, Y. Huang, Y. Song, Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy. J. Am. Chem. Soc. 135, 9287 (2013)

    Article  CAS  Google Scholar 

  7. N. Wada, Y. Yokomizo, C. Yogi, M. Katayama, A. Tanaka, K. Kojima, Y. Inada, K. Ozutsumi, Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33, 467 (2018)

    Article  CAS  Google Scholar 

  8. X.-S. Wang, L. Li, D. Li, J. Ye, Recent progress on exploring stable metal-organic frameworks for photocatalytic solar fuel production. Sol. RRL 4, 1900547 (2020)

    Article  CAS  Google Scholar 

  9. J.C. Cardoso, S. Stulp, J.F. de Brito, J.B.S. Flor, R.C.G. Frem, M.V.B. Zanoni, MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Appl. Catal. B 225, 563 (2018)

    Article  CAS  Google Scholar 

  10. A. Huang, Q. Liu, N. Wang, Y. Zhu, J. Caro, Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc. 136, 14686 (2014)

    Article  CAS  Google Scholar 

  11. J. Zhang, T. Zhang, K. Xiao, S. Cheng, G. Qian, Y. Wang, Y. Feng, Novel and facile strategy for controllable synthesis of multilayered core-shell zeolitic imidazolate frameworks. Cryst. Growth Des. 16, 6494 (2016)

    Article  CAS  Google Scholar 

  12. J. Tang, R.R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S.M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J.H. Kim, Y. Yamauchi, Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 6, 30295 (2016)

    Article  CAS  Google Scholar 

  13. H. Yang, X.-W. He, F. Wang, Y. Kang, J. Zhang, Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J. Mater. Chem. 22, 21849 (2012)

    Article  CAS  Google Scholar 

  14. D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 140, 1812 (2018)

    Article  CAS  Google Scholar 

  15. H.-P. Jing, C.-C. Wang, Y.-W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 4, 54454 (2014)

    Article  CAS  Google Scholar 

  16. J. Cravillon, C.A. Schröder, R. Nayuk, J. Gummel, K. Huber, M. Wiebcke, Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew. Chem. Int. Ed. 50, 8067 (2011)

    Article  CAS  Google Scholar 

  17. J. Wei, Y. Hu, Y. Liang, B. Kong, Z. Zheng, J. Zhang, S.P. Jiang, Y. Zhao, H. Wang, Graphene oxide/core-shell structured metal-organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions. J. Mater. Chem. A 5, 10182 (2017)

    Article  CAS  Google Scholar 

  18. Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610 (2018)

    Article  CAS  Google Scholar 

  19. C. Rösler, A. Aijaz, S. Turner, M. Filippousi, A. Shahabi, W. Xia, G. Van Tendeloo, M. Muhler, R.A. Fischer, Hollow Zn/Co zeolitic imidazolate framework (ZIF) and yolk-shell Metal@Zn/Co ZIF nanostructures. Chem. Eur. J. 22, 3304 (2016)

    Article  CAS  Google Scholar 

  20. J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem. Int. Ed. 54, 10889 (2015)

    Article  CAS  Google Scholar 

  21. Y. Zhang, S.-J. Park, Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr(VI). Appl. Catal. B 240, 92 (2019)

    Article  CAS  Google Scholar 

  22. K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen, F. Verpoort, Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A 5, 952 (2017)

    Article  CAS  Google Scholar 

  23. M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite. Chem. Mater. 13, 3169 (2001)

    Article  CAS  Google Scholar 

  24. Y. Zhang, Z. Jin, Boosting photocatalytic hydrogen evolution achieved by NiSx coupled with g-C3N4@ZIF-67 heterojunction. J. Phys. Chem. C 123, 18248 (2019)

    Article  CAS  Google Scholar 

  25. Z. Jin, H. Yang, Exploration of Zr-metal-organic framework as efficient photocatalyst for hydrogen production. Nano Res. Lett. 12, 539 (2017)

    Article  CAS  Google Scholar 

  26. Z. Huang, S. Zhao, Y. Yu, Experimental method to explore the adaptation degree of type-II and all-solid-state Z-scheme heterojunction structures in the same degradation system. Chin. J. Catal. 41, 1522 (2020)

    Article  CAS  Google Scholar 

  27. B. Pattengale, S. Yang, J. Ludwig, Z. Huang, X. Zhang, J. Huang, Exceptionally long-lived charge separated state in zeolitic imidazolate framework: implication for photocatalytic applications. J. Am. Chem. Soc. 138, 8072 (2016)

    Article  CAS  Google Scholar 

  28. H. Li, H. Ma, X. Wang, J. Gao, C. Chen, S. Shi, M. Qu, N. Feng, J. Xu, Efficient oxidation of ethylbenzene catalyzed by cobalt zeolitic imidazolate framework ZIF-67 and NHPI. J. Energy Chem. 23, 742 (2014)

    Article  Google Scholar 

  29. G. Liu, S. Liu, Q. Lu, H. Sun, Z. Xiu, Synthesis of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances. Ind. Eng. Chem. Res. 53, 13023 (2014)

    Article  CAS  Google Scholar 

  30. Y. Meng, L. Zhang, H. Jiu, Q. Zhang, H. Zhang, W. Ren, Y. Sun, D. Li, Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity. Mater. Sci. Semicond. Process. 95, 35 (2019)

    Article  CAS  Google Scholar 

  31. Y.-H. Ding, X.-L. Zhang, N. Zhang, J.-Y. Zhang, R. Zhang, Y.-F. Liu, Y.-Z. Fang, A visible-light driven Bi2S3@ZIF-8 core-shell heterostructure and synergistic photocatalysis mechanism. Dalton Trans. 47, 684 (2018)

    Article  CAS  Google Scholar 

  32. C. Yuan, P. Cheng, J. Li, X. Gao, X. Gao, X. Wang, M. Jin, R. Nötzel, G. Zhou, Z. Zhang, J. Liu, ZIF-67 with Argon annealing treatment for visible light responsive degradation of organic dyes in a wide pH range. Microporous Mesoporous Mater. 285, 13 (2019)

    Article  CAS  Google Scholar 

  33. F.-T. Li, Y. Zhao, Y. Liu, Y.-J. Hao, R.-H. Liu, D.-S. Zhao, Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders. Chem. Eng. J. 173, 750 (2011)

    Article  CAS  Google Scholar 

  34. Y. Su, S. Li, D. He, D. Yu, F. Liu, N. Shao, Z. Zhang, MOF-derived porous ZnO nanocages/rGO/carbon sponge-based photocatalytic microreactor for efficient degradation of water pollutants and hydrogen evolution. ACS Sustain. Chem. Eng. 6, 11989 (2018)

    Article  CAS  Google Scholar 

  35. Y. Su, D. Ao, H. Liu, Y. Wang, MOF-derived yolk-shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 5, 8680 (2017)

    Article  CAS  Google Scholar 

  36. C. Kong, S. Min, G. Lu, Dye-sensitized NiSx catalyst decorated on graphene for highly efficient reduction of water to hydrogen under visible light irradiation. ACS Catal. 4, 2763 (2014)

    Article  CAS  Google Scholar 

  37. B. Tian, Y. Wu, G. Lu, Metal-free plasmonic boron phosphide/graphitic carbon nitride with core-shell structure photocatalysts for overall water splitting. Appl. Catal. B 280, 119410 (2021)

    Article  CAS  Google Scholar 

  38. W. Zhen, X. Ning, B. Yang, Y. Wu, Z. Li, G. Lu, The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl. Catal. B 221, 243 (2018)

    Article  CAS  Google Scholar 

  39. A. Helal, F.A. Harraz, A.A. Ismail, T.M. Sami, I.A. Ibrahim, Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light. Appl. Catal. B 213, 18 (2017)

    Article  CAS  Google Scholar 

  40. X. Feng, M.A. Carreon, Kinetics of transformation on ZIF-67 crystals. J. Cryst. Growth 418, 158 (2015)

    Article  CAS  Google Scholar 

  41. D.-H. Kim, J.-E. Koo, C.S. Hong, S. Oh, Y. Do, Novel examples of high-dimensional mixed-valence copper cyanide complexes. Inorg. Chem. 44, 4383 (2005)

    Article  CAS  Google Scholar 

  42. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, T. Hirotsu, Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interface Sci. 298, 602 (2006)

    Article  CAS  Google Scholar 

  43. S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, H. He, Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B 144, 885 (2014)

    Article  CAS  Google Scholar 

  44. Y. Jia, S. Li, J. Gao, G. Zhu, F. Zhang, X. Shi, Y. Huang, C. Liu, Highly efficient (BiO)2CO3-BiO2-x-graphene photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Appl. Catal. B 240, 241 (2019)

    Article  CAS  Google Scholar 

  45. Y. Jin, J. Long, X. Ma, T. Zhou, Z. Zhang, H. Lin, J. Long, X. Wang, Synthesis of caged iodine-modified ZnO nanomaterials and study on their visible light photocatalytic antibacterial properties. Appl. Catal. B 256, 117873 (2019)

    Article  CAS  Google Scholar 

  46. J. Kim, C.W. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ. Sci. Technol. 44, 6849 (2010)

    Article  CAS  Google Scholar 

  47. X. Zhang, H. Dong, X.-J. Sun, D.-D. Yang, J.-L. Sheng, H.-L. Tang, X.-B. Meng, F.-M. Zhang, Step-by-step improving photocatalytic hydrogen evolution activity of NH2-UiO-66 by constructing heterojunction and encapsulating carbon nanodots. ACS Sustain. Chem. Eng. 6, 11563 (2018)

    Article  CAS  Google Scholar 

  48. J. Fu, C. Bie, B. Cheng, C. Jiang, J. Yu, Hollow CoSx polyhedrons act as high-efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g-C3N4. ACS Sustain. Chem. Eng. 6, 2767 (2018)

    Article  CAS  Google Scholar 

  49. Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance. Sol. RRL 2, 1800006 (2018)

    Article  CAS  Google Scholar 

  50. Y.-J. Yuan, Y. Yang, Z. Li, D. Chen, S. Wu, G. Fang, W. Bai, M. Ding, L.-X. Yang, D.-P. Cao, Z.-T. Yu, Z.-G. Zou, Promoting charge separation in g-C3N4/graphene/MoS2 photocatalysts by two-dimensional nanojunction for enhanced photocatalytic H2 production. ACS Appl. Energy Mater. 1, 1400 (2018)

    Article  CAS  Google Scholar 

  51. C. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv. Funct. Mater. 27, 1604328 (2017)

    Article  CAS  Google Scholar 

  52. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014)

    Article  CAS  Google Scholar 

  53. H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 1605148 (2017)

    Article  CAS  Google Scholar 

  54. L. Kronik, Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1 (1999)

    Article  CAS  Google Scholar 

  55. J. Xiao, Z. Chen, G. Zhang, Q.-Y. Li, Q. Yin, X.-F. Jiang, F. Huang, Y.-X. Xu, H.-L. Yip, Y. Cao, Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss. J. Mater. Chem. C 6, 4457 (2018)

    Article  CAS  Google Scholar 

  56. X. Wei, T. Xie, L. Peng, W. Fu, J. Chen, Q. Gao, G. Hong, D. Wang, Effect of heterojunction on the behavior of photogenerated charges in Fe3O4@Fe2O3 nanoparticle photocatalysts. J. Phys. Chem. C 115, 8637 (2011)

    Article  CAS  Google Scholar 

  57. J.K. Zaręba, M. Nyk, M. Samoć, Co/ZIF-8 heterometallic nanoparticles: control of nanocrystal size and properties by a mixed-metal approach. Cryst. Growth Des. 16, 6419 (2016)

    Article  CAS  Google Scholar 

  58. X. Wang, X. Fan, H. Lin, H. Fu, T. Wang, J. Zheng, X. Li, An efficient Co-N-C oxygen reduction catalyst with highly dispersed Co sites derived from a ZnCo bimetallic zeolitic imidazolate framework. RSC Adv. 6, 37965 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51872108 and U20A20246), Wuhan Planning Project of Science and Technology (No. 2018010401011294) and the Fundamental Research Funds for the Central Universities (No. CCNU20TS006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zhou, J., Zhao, Y. et al. Stable core–shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. Journal of Materials Research 36, 602–614 (2021). https://doi.org/10.1557/s43578-021-00117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00117-5

Keywords

Navigation