Skip to main content
Log in

Treatment of volatile organic compounds from a typical waste printed circuit board dismantling workshop by a pilot-scale biotrickling filter

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A pilot-scale biotrickling filter (BTF) was designed to treat volatile organic compounds (VOCs) emitted from a typical waste printed circuit board (WPCB) pyrolysis workshop. Measured by gas chromatography-mass spectrometry (GC-MS), the main components of VOCs and their concentrations were benzene, toluene, chlorobenzene, ethyl-benzene, xylene, styrene, benzaldehyde, and trimethyl-benzene. The removal efficiencies of the BTF for these compounds ranged from 81.1 to 97.8% after 90 days of operation. The maximum elimination capacity of 25.94 g/m3 h was obtained with the inlet loading of 30.72 g/m3 fixed the fixed empty-bed residence time (EBRT) of 9.80 sec. Hazard ratio index based on threshold limit value for time weighted average (TLV-TWA) and VOCs concentrations indicated that the cancer risk of VOCs was significantly reduced after the BTF treatment. The microbial community analysis revealed initial inoculum and some emerging bacteria played crucial roles in the improvement of BTF performance with the biodegradation of this kind of VOCs by the polymerase chain reactiondenaturing gradient gel electrophoresis (PCR-DGGE) technique and pyrosequencing analyses indicated that proteobacteria phylum was the dominant in the BTF. All above results indicated that VOCs with multicomponent and fluctuant concentrations from a typical waste printed circuit board pyrolysis workshop were removed efficiently and in an environmentally friendly way by the biofiltration method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BhuTta, M. K. S., A. Omar, and X. Yang (2011) Electronic waste: a growing concern in today’s environment. Eco. Res. Internat. 2011: 8.

    Google Scholar 

  2. Basdere, B. and G. Seliger (2003) Disassembly factories for electrical and electronic products to recover resources in product and material cycles. Environ. Sci. Technol. 37: 5354–5362.

    Article  CAS  Google Scholar 

  3. Bai, Q. Z. W., H. Han, J. Nie, Y. F. (2001) the status of technology and research of mechanical recycling of printed circuit board scrap. Tech. Equip. Environ. Pollut. Cont. 2:6.

    Google Scholar 

  4. Zhou, Y. H. and K. Q. Qiu (2010) A new technology for recycling materials from waste printed circuit boards. J. Hazard. Mater. 175: 823–828.

    Article  CAS  Google Scholar 

  5. Chiang, H. L. and K. H. Lin (2014) Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control. J. Hazard. Mater. 264: 545–551.

    Article  CAS  Google Scholar 

  6. Alberici, R. M. and W. E. Jardim (1997) Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl. Catal. B-environ. 14: 55–68.

    Article  CAS  Google Scholar 

  7. Biard, P. F., A. Couvert, C. Renner, and J. P. Levasseur (2009) Assessment and optimisation of VOC mass transfer enhancement by advanced oxidation process in a compact wet scrubber. Chemosphere. 77: 182–187.

    Article  CAS  Google Scholar 

  8. Salvador, S., J. M. Commandre, and Y. Kara (2006) Thermal recuperative incineration of VOCs: CFD modelling and experimental validation. Appl. Therm. Eng. 26: 2355–2366.

    Article  CAS  Google Scholar 

  9. Shim, E. H., J. Kim, K. S. Cho, and H. W. Ryu (2006) Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether. Environ. Sci. Technol. 40: 3089–3094.

    Article  CAS  Google Scholar 

  10. Gallastegui, G., A. A. Ramirez, A. Elias, J. P. Jones, and M. Heitz (2011) Performance and macrokinetic analysis of biofiltration of toluene and p-xylene mixtures in a conventional biofilter packed with inert material. Bioresour. Technol. 102: 7657–7665.

    Article  CAS  Google Scholar 

  11. Jang, J. H., M. Hirai, and M. Shoda (2004) Styrene degradation by Pseudomonas sp SR-5 in biofilters with organic and inorganic packing materials. Appl. Microbiol. Biot. 65: 349–355.

    Article  CAS  Google Scholar 

  12. US, EPA (1999) Compendium of methods for the determination of toxic organic compounds in ambient air-second edition. United States Environmental Proteotion Agency, Report EPA/625/R-96/010b.

    Google Scholar 

  13. He, Z. G., J. J. Li, J. Y. Chen, Z. P. Chen, G. Y. Li, G. P. Sun, and T. C. An (2012) Treatment of organic waste gas in a paint plant by combined technique of biotrickling filtration with photocatalytic oxidation. Chem. Eng. J. 200: 645–653.

    Article  Google Scholar 

  14. Li, J. J., G. Y. Ye, D. F. Sun, T. C. An, G. P. Sun, and S. Z. Liang (2012) Performance of a biotrickling filter in the removal of waste gases containing low concentrations of mixed VOCs from a paint and coating plant. Biodegradation 23: 177–187.

    Article  CAS  Google Scholar 

  15. Wang, S. B., Q. Li, W. J. Liang, Y. Jiang, and S. W. Jiang (2008) PCR-DGGE analysis of nematode diversity in Cu-contaminated soil. Pedosphere. 18: 621–627.

    Article  CAS  Google Scholar 

  16. Muyzer, G. and K. Smalla (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73: 127–141.

    Article  CAS  Google Scholar 

  17. Sun, D. F., J. J. Li, T. C. An, M. Y. Xu, G. P. Sun, and J. Guo (2012) Bacterial community diversity and functional gene abundance of structured mixed packing and inert packing materials based biotrickling filters. Biotechnol. Bioproc. Eng. 17: 643–653.

    Article  CAS  Google Scholar 

  18. Cabrol, L., L. Malhautier, F. Poly, A. S. Lepeuple, and J. L. Fanlo (2010) Assessing the bias linked to DNA recovery from biofiltration woodchips for microbial community investigation by fingerprinting. Appl. Microbiol. Biot. 85: 779–790.

    Article  CAS  Google Scholar 

  19. Yeh, C. H., C. W. Lin, and C. H. Wu (2010) A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies. J. Hazard. Mater. 178: 74–80.

    Article  CAS  Google Scholar 

  20. Mo, J. H., Y. P. Zhang, Q. J. Xu, Y. F. Zhu, J. J. Lamson, and R. Y. Zhao (2009) Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Appl. Catal. B-Environ. 89: 570–576.

    Article  CAS  Google Scholar 

  21. Smith, M. R. (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1: 191–206.

    Article  CAS  Google Scholar 

  22. Hendrickx, B., H. Junca, J. Vosahlova, A. Lindner, I. Ruegg, M. Bucheli-Witschel, F. Faber, T. Egli, M. Mau, M. Schlomann, M. Brennerova, V. Brenner, D. H. Pieper, E. M. Top, W. Dejonghe, L. Bastiaens, and D. Springael (2006) Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J. Microbiol. Meth. 64: 250–265.

    Article  CAS  Google Scholar 

  23. Hendrickkx, B., W. Dejonghe, F. Faber, W. Bonne, L. Bastiaens, W. Verstraete, E. Top, and D. Springael (2006) PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Mircobiol. Ecol. 55: 262–273.

    Article  Google Scholar 

  24. Furukawa, K., N. Tomizuka, and A. Kamibayashi (1979) Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38: 301–310.

    CAS  Google Scholar 

  25. Zhang, L. L., S. Q. Leng, R. Y. Zhu, and J. M. Chen (2011) Degradation of chlorobenzene by strain Ralstonia pickettii L2 isolated from a biotrickling filter treating a chlorobenzenecontaminated gas stream. Appl. Microbiol. Biot. 91: 407–415.

    Article  CAS  Google Scholar 

  26. Paca, J., E. Klapkova, M. Halecky, K. Jones, and T. S. Webster (2006) Interactions of hydrophobic and hydrophilic solvent component degradation in an air-phase biotrickling filter reactor. Environ. Prog. 25: 365–372.

    Article  CAS  Google Scholar 

  27. Kim, D., Z. L. Cai, and G. A. Sorial (2005) Impact of interchanging VOCs on the performance of trickle bed air biofilter. Chem. Eng. J. 113: 153–160.

    Article  CAS  Google Scholar 

  28. Deshusses, M. A. and C. T. Johnson (2000) Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment. Environ. Sci. Technol. 34: 461–467.

    Article  CAS  Google Scholar 

  29. Sempere, F., C. Gabaldon, V. Martinez-Soria, P. Marzal, J. M. Penya-Roja, and F. J. Alvarez-Hornos (2008) Performance evaluation of a biotrickling filter treating a mixture of oxygenated VOCs during intermittent loading. Chemosphere. 73: 1533–1539.

    Article  CAS  Google Scholar 

  30. Baldwin, B. R., C. H. Nakatsu, and L. Nies (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and realtime PCR. Appl. Environ. Microbiol. 69: 3350–3358.

    Article  CAS  Google Scholar 

  31. Hendrickx, B., W. Dejonghe, F. Faber, W. Boenne, L. Bastiaens, W. Verstraete, E. M. Top, and D. Springael (2006) PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol. Ecol. 55: 262–273.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, D., Li, J., Sun, D. et al. Treatment of volatile organic compounds from a typical waste printed circuit board dismantling workshop by a pilot-scale biotrickling filter. Biotechnol Bioproc E 20, 766–774 (2015). https://doi.org/10.1007/s12257-015-0212-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0212-z

Keywords

Navigation