Skip to main content
Log in

Bacterial community diversity and functional gene abundance of structured mixed packing and inert packing materials based biotrickling filters

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Packing is the most important factor in biofilter design. A structured mixed packing (SMP) material, combined with various organic and inorganic materials (mineral matter is 80.18 ± 0.48%, w: w), was constructed by ureaformaldehyde resin in order to minimize the disadvantages of these materials when used as stand-alone components. The performance of the toluene biotrickling filter (BTF) packed with SMP was compared with the other BTFs packed with a ceramic raschig ring, ceramic pall ring, and lava rock, respectively, for 217 day under various operating conditions. Real-time PCR and DGGE techniques were applied to reveal the gene coding for the toluene-degrading enzymes and the bacterial community structure in the BTFs. The toluene-degradation gene copies exponentially increased, and bacterial diversity significantly decreased with the improving elimination capacities of the BTFs. The overload and shutdown operations resulted in insignificant fluctuations in the toluene-degradation gene copies at equal levels as well as a slight variation in the bacterial community structures in the BTFs. Various putative toluene-degrading bacteria were found using sequencing bands from the DGGE gels; some bacteria, such as Burkholderia spp., were further confirmed by real-time PCR; other bacteria, such as Alcaligenes spp., might not have been reported. The packing properties of SMP material supported more toluene-degradation gene copies in the biofilm, and higher toluene-degrading bacterial diversity of the BTF, than did inert packing. Thus, the BTF with SMP demonstrated excellent performance, suggesting the suitability of SMP for real applications, whereas the capabilities of inert packing materials are more suited to the treatment of steady low VOC loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramirez-Lopez, E., J. Corona-Hernandez, L. Dendooven, P. Rangel, and F. Thalasso (2003) Characterization of five agricultural by-products as potential biofilter carriers. Bioresour. Technol. 88: 259–263.

    Article  CAS  Google Scholar 

  2. Jang, J., M. Hirai, and M. Shoda (2004) Styrene degradation by Pseudomonas sp. SR-5 in biofilters with organic and inorganic packing materials. Appl. Microbiol. Biot. 65: 349–355.

    Article  CAS  Google Scholar 

  3. Jin, Y., M. C. Veiga, and C. Kennes (2006) Development of a novel monolith-bioreactor for the treatment of VOC-polluted air. Environ. Technol. 27: 1271–1277.

    Article  CAS  Google Scholar 

  4. Singh, R. S., S. S. Agnihotri, and S. N. Upadhyay (2006) Removal of toluene vapour using agro-waste as biofilter media. Bioresour. Technol. 97: 2296–2301.

    Article  CAS  Google Scholar 

  5. Kennes, C. and M. C. Veiga (2001) Bioreactors for waste gas treatment. 1st ed., pp. 47–48, 82–83, 99–102, and 114–117. Kluwer Academic Publishers, 101 Philip Drive Assinippi Park, Norwell, USA.

    Google Scholar 

  6. Ryu, H. W., S. J. Kim, K. S. Cho, and T. H. Lee (2008) Toluene degradation in a polyurethane biofilter at high loading. Biotechnol. Bioproc. Eng. 13: 360–365.

    Article  CAS  Google Scholar 

  7. Singh, K., R. S. Singh, B. N. Rai, and S. N. Upadhyay (2010) Biofiltration of toluene using wood charcoal as the biofilter media. Bioresour. Technol. 101: 3947–3951.

    Article  CAS  Google Scholar 

  8. Zilli, M., E. Palazzi, L. Sene, A. Converti, and M. Del Borghi (2001) Toluene and styrene removal from air in biofilters. Proc. Biochem. 37: 423–429.

    Article  CAS  Google Scholar 

  9. Arulneyam, D. and T. Swaminathan (2004) Biodegradation of mixture of VOC’s in a biofilter. J. Environ. Sci.-China 16: 30–33.

    CAS  Google Scholar 

  10. Jang, J. H., M. Hirai, and M. Shoda (2005) Performance of a styrene-degrading biofilter inoculated with Pseudomonas sp SR-5. J. Biosci. Bioeng. 100: 297–302.

    Article  CAS  Google Scholar 

  11. Xi, J. Y., H. Y. Hu, H. B. Zhu, and Y. Qian (2005) Effects of adding inert spheres into the filter bed on the performance of biofilters for gaseous toluene removal. Biochem. Eng. J. 23: 123–130.

    Article  CAS  Google Scholar 

  12. Lebrero, R., E. Rodriguez, M. Martin, P. A. Garcia-Encina, and R. Munoz (2010) H2S and VOCs abatement robustness in biofilters and air diffusion bioreactors: A comparative study. Water Res. 44: 3905–3914.

    Article  CAS  Google Scholar 

  13. Babbitt, C., A. Pacheco, and A. Lindner (2009) Methanol removal efficiency and bacterial diversity of an activated carbon biofilter. Bioresour. Technol. 100: 6207–6216.

    Article  CAS  Google Scholar 

  14. Ho, K., Y. Chung, and C. Tseng (2008) Continuous deodorization and bacterial community analysis of a biofilter treating nitrogencontaining gases from swine waste storage pits. Bioresour. Technol. 99: 2757–2765.

    Article  CAS  Google Scholar 

  15. Ding, Y., W. Wu, Z. Han, and Y. Chen (2008) Correlation of reactor performance and bacterial community composition during the removal of trimethylamine in three-stage biofilters. Biochem. Eng. J. 38: 248–258.

    Article  CAS  Google Scholar 

  16. Chung, Y. (2007) Evaluation of gas removal and bacterial community diversity in a biofilter developed to treat composting exhaust gases. J. Hazard. Mater. 144: 377–385.

    Article  CAS  Google Scholar 

  17. Baldwin, B. R., C. H. Nakatsu, J. Nebe, G. S. Wickham, C. Parks, and L. Nies (2009) Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site. J. Hazard. Mater. 163: 524–530.

    Article  CAS  Google Scholar 

  18. Yeh, C. H., C. W. Lin, and C. H. Wu (2010) A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies. J. Hazard. Mater. 178: 74–80.

    Article  CAS  Google Scholar 

  19. Kao, C. M., C. S. Chen, F. Y. Tsa, K. H. Yang, C. C. Chien, S. H. Liang, C. A. Yang, and S. C. Chen (2010) Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. J. Hazard. Mater. 178: 409–416.

    Article  CAS  Google Scholar 

  20. Baldwin, B., C. Nakatsu, and L. Nies (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and realtime PCR. Appl. Environ. Microb. 69: 3350–3358.

    Article  CAS  Google Scholar 

  21. Hendrickx, B., H. Junca, J. Vosahlova, A. Lindner, I. Rüegg, M. Bucheli-Witschel, F. Faber, T. Egli, M. Mau, and M. Schlömann (2006) Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site.

  22. Hendrickx, B., W. Dejonghe, F. Faber, W. Bonne, L. Bastiaens, W. Verstraete, E. Top, and D. Springael (2006) PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol. Ecol. 55: 262–273.

    Article  CAS  Google Scholar 

  23. Song, B. and B. Ward (2005) Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl. Environ. Microb. 71: 2036–2045.

    Article  CAS  Google Scholar 

  24. Hosoda, A., Y. Kasai, N. Hamamura, Y. Takahata, and K. Watanabe (2005) Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Biodegradation. 16: 591–601.

    Article  CAS  Google Scholar 

  25. Sun, D. F., J. J. Li, T. C. An, M. Y. Xu, G. P. Sun, and J. Guo (2011) Evaluation of the performance of structured mixed packing and inert packing materials in toluene Biotrickle-filtration. Biotechnol. Bioproc. Eng. 16: 1009–1018.

    Article  CAS  Google Scholar 

  26. Yin, J. and W. F. Xu (2009) Ammonia biofiltration and community analysis of ammonia-oxidizing bacteria in biofilters. Bioresour. Technol. 100: 3869–3876.

    Article  CAS  Google Scholar 

  27. Ni, S. Q., B. Y. Gao, C. C. Wang, J. G. Lin, and S. Sung (2010) Fast start-up, performance and microbial community in a pilotscale anammox reactor seeded with exotic mature granules. Bioresour. Technol. 102: 2448–2454.

    Article  Google Scholar 

  28. Labbe, D., R. Margesin, F. Schinner, L. Whyte, and C. Greer (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol. Ecol. 59: 466–475.

    Article  CAS  Google Scholar 

  29. Humbert, J., U. Dorigo, P. Cecchi, B. Le Berre, D. Debroas, and M. Bouvy (2009) Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems. Environ. Microbiol. 11: 2339–2350.

    Article  CAS  Google Scholar 

  30. Konstantinov, S., W. Zhu, B. Williams, S. Tamminga, W. Vos, and A. Akkermans (2003) Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol. Ecol. 43: 225–235.

    Article  CAS  Google Scholar 

  31. Clegg, C., R. Lovell, and P. Hobbs (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soils. FEMS Microbiol. Ecol. 43: 263–270.

    Article  CAS  Google Scholar 

  32. Fu, Y., L. Shao, L. Tong, and H. Liu (2011) Ethylene removal efficiency and bacterial community diversity of a natural zeolite biofilter. Bioresource Technol. 102: 576–584.

    Article  CAS  Google Scholar 

  33. Akdeniz, N., K. A. Janni, and I. A. Salnikov (2011) Biofilter performance of pine nuggets and lava rock as media. Bioresour. Technol. 102: 4974–4980.

    Article  CAS  Google Scholar 

  34. Maestre, J. P., X. Gamisans, D. Gabriel, and J. Lafuente (2007) Fungal biofilters for toluene biofiltration: Evaluation of the performance with four packing materials under different operating conditions. Chemosphere. 67: 684–692.

    Article  CAS  Google Scholar 

  35. Langolf, B. and G. Kleinheinz (2006) A lava rock-based biofilter for the treatment of alpha-pinene. Bioresour. Technol. 97: 1951–1958.

    Article  CAS  Google Scholar 

  36. Kwon, H. M. and S. H. Yeom (2009) Design of a biofilter packed with crab shell and operation of the biofilter fed with leaf mold solution as a nutrient. Biotechnol. Bioproc. Eng. 14: 248–255.

    Article  CAS  Google Scholar 

  37. Deshusses, M. and C. Johnson (2000) Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment. Environ. Sci. Technol. 34: 461–467.

    Article  CAS  Google Scholar 

  38. Xi, J. Y., H. Y. Hu, and Y. Qian (2006) Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene: Biomass accumulation and stable-run time estimation. Biochem. Eng. J. 31: 165–172.

    Article  CAS  Google Scholar 

  39. Moe, W. M. and B. Qi (2004) Performance of a fungal biofilter treating gas-phase solvent mixtures during intermittent loading. Water Res. 38: 2259–2268.

    Article  CAS  Google Scholar 

  40. Muyzer, G. and K. Smalla (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73: 127–141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, D., Li, J., An, T. et al. Bacterial community diversity and functional gene abundance of structured mixed packing and inert packing materials based biotrickling filters. Biotechnol Bioproc E 17, 643–653 (2012). https://doi.org/10.1007/s12257-011-0239-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0239-8

Keywords

Navigation