Skip to main content
Log in

The role of molecular chaperones in the mechanisms of epileptogenesis

  • Perspective and Reflection Article
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Epilepsy is a group of neurological diseases which requires significant economic costs for the treatment and care of patients. The central point of epileptogenesis stems from the failure of synaptic signal transmission mechanisms, leading to excessive synchronous excitation of neurons and characteristic epileptic electroencephalogram activity, in typical cases being manifested as seizures and loss of consciousness. The causes of epilepsy are extremely diverse, which is one of the reasons for the complexity of selecting a treatment regimen for each individual case and the high frequency of pharmacoresistant cases. Therefore, the search for new drugs and methods of epilepsy treatment requires an advanced study of the molecular mechanisms of epileptogenesis. In this regard, the investigation of molecular chaperones as potential mediators of epileptogenesis seems promising because the chaperones are involved in the processing and regulation of the activity of many key proteins directly responsible for the generation of abnormal neuronal excitation in epilepsy. In this review, we try to systematize current data on the role of molecular chaperones in epileptogenesis and discuss the prospects for the use of chemical modulators of various chaperone groups’ activity as promising antiepileptic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABC:

The ATP-binding cassette transporter

ADLTLE:

Autosomal dominant lateral temporal lobe epilepsy

AEDs:

Antiepileptic drugs

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ATP:

Adenosine triphosphate

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

CHIP:

C terminus of HSC70-interacting protein

CNS:

Central nervous system

CREB:

CAMP response element-binding protein

EAAT:

Excitatory amino acid transporter

EEG:

Electroencephalogram

ER:

Endoplasmic reticulum

ERAD:

ER-associated protein degradation system

FDA:

Food and Drug Administration

GABA:

γ-Aminobutyric acid

GAD:

Glutamate decarboxylase

GC:

Glucocorticoids

GLAST:

Glutamate aspartate transporter

GLT:

Glutamate transporter

GLUT:

Glucose transporter

GR:

Glucocorticoid receptor

Grps:

Glucose-regulated proteins

HS:

Heat shock

HSF:

Heat shock factor

Hsps:

Heat shock proteins

IkB:

Inhibitor of nuclear factor kappa B

JNK:

C-Jun N-terminal kinases

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MDR1:

Multidrug resistance factor 1

MMP:

Matrix metalloproteinases

NF-κB:

Nuclear factor kappa B

NMDA:

N-methyl-D-aspartate

PDI:

Protein disulfide isomerase

PXR:

Pregnane X receptor

SE:

Status epilepticus

TLR:

Toll-like receptor

TLE:

Temporal lobe epilepsy

TNF:

Tumor necrosis factor

UPS:

Ubiquitin-proteasome system

WHO:

World Health Organization

References

  • Aarts MM, Tymianski M (2004) Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med 4(2):137–147

    Article  CAS  PubMed  Google Scholar 

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6(7):1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Achar A, Ghosh C (2021) Multiple hurdle mechanism and blood-brain barrier in epilepsy: glucocorticoid receptor-heat shock proteins on drug regulation. Neural Regen Res 16(12):2427–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbar MT, Lundberg AM, Liu K, Vidyadaran K, Wells KI, Dolatshad H, Wynn S, Wells DJ, Latchman DS, de Belleroche J (2003) The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J Biol Chem 278(22):19956–19965

    Article  CAS  PubMed  Google Scholar 

  • Akyuz E, Polat AK, Eroglu E, Kullu I, Angelopoulou E, Paudel YN (2021) Revisiting the role of neurotransmitters in epilepsy: an updated review. Life Sci 265:118826

    Article  CAS  PubMed  Google Scholar 

  • Allers K, Essue BM, Hackett ML, Muhunthan J, Anderson CS, Pickles K, Scheibe F, Jan S (2015) The economic impact of epilepsy: a systematic review. BMC Neurol 15:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Alsaadi T, El Hammasi K, Shahrour TM, Shakra M, Turkawi L, Almaskari B, Diab L, Raoof M (2015) Prevalence of depression and anxiety among patients with epilepsy attending the epilepsy clinic at Sheikh Khalifa Medical City, UAE: a cross-sectional study. Epilepsy Behav 52(Pt A):194–199

    Article  PubMed  Google Scholar 

  • Alsahli S, Alfares A, Guzmán-Vega FJ, Arold ST, Ba-Armah D, Al Mutairi F (2019) Truncating biallelic variant in DNAJA1, encoding the co-chaperone Hsp40, is associated with intellectual disability and seizures. Neurogenetics 20(2):109–115

    Article  CAS  PubMed  Google Scholar 

  • Ammon-Treiber S, Grecksch G, Angelidis C, Vezyraki P, Höllt V, Becker A (2007) Pentylenetetrazol-kindling in mice overexpressing heat shock protein 70. Naunyn Schmiedebergs Arch Pharmacol 375(2):115–121

    Article  CAS  PubMed  Google Scholar 

  • Ando Y, Coelho T, Berk JL, Cruz MW, Ericzon BG, Ikeda S, Lewis WD, Obici L, Planté-Bordeneuve V, Rapezzi C et al (2013) Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J Rare Dis 8:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Aneja R, Odoms K, Dunsmore K, Shanley TP, Wong HR (2006) Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol 177(10):7184–7192

    Article  CAS  PubMed  Google Scholar 

  • Aronica E, Boer K, van Vliet EA, Redeker S, Baayen JC, Spliet WG, van Rijen PC, Troost D, da Silva FH, Wadman WJ et al (2007) Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis 26(3):497–511

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6(4):435–442

    Article  CAS  PubMed  Google Scholar 

  • Barela AJ, Waddy SP, Lickfett JG, Hunter J, Anido A, Helmers SL, Goldin AL, Escayg A (2006) An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability. J Neurosci 26(10):2714–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bausinger H, Lipsker D, Ziylan U, Manié S, Briand JP, Cazenave JP, Muller S, Haeuw JF, Ravanat C, de la Salle H et al (2002) Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 32(12):3708–3713

    Article  CAS  PubMed  Google Scholar 

  • Beghi E (2020) The epidemiology of epilepsy. Neuroepidemiology 54:185–191

    Article  PubMed  Google Scholar 

  • Bercovich B, Stancovski I, Mayer A, Blumenfeld N, Laszlo A, Schwartz AL, Ciechanover A (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272(14):9002–9010

    Article  CAS  PubMed  Google Scholar 

  • Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde BW, Engel J, French J, Glauser TA, Mathern GW et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51(4):676–685

    Article  PubMed  Google Scholar 

  • Betjemann JP, Lowenstein DH (2015) Status epilepticus in adults. Lancet Neurol 14(6):615–624

    Article  PubMed  Google Scholar 

  • Bidmon HJ, Görg B, Palomero-Gallagher N, Behne F, Lahl R, Pannek HW, Speckmann EJ, Zilles K (2004) Heat shock protein-27 is upregulated in the temporal cortex of patients with epilepsy. Epilepsia 45(12):1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Blinov D (2022) Epilepsy syndromes: the 2022 ILAE definition and classification. Epilepsy Paroxysmal Conditions 14(2):101–182

    Article  Google Scholar 

  • Bocchio M, Lukacs IP, Stacey R, Plaha P, Apostolopoulos V, Livermore L, Sen A, Ansorge O, Gillies MJ, Somogyi P et al (2018) Group II metabotropic glutamate receptors mediate presynaptic inhibition of excitatory transmission in pyramidal neurons of the human cerebral cortex. Front Cell Neurosci 12:508

    Article  CAS  PubMed  Google Scholar 

  • Borges TJ, Lopes RL, Pinho NG, Machado FD, Souza AP, Bonorino C (2013) Extracellular Hsp70 inhibits pro-inflammatory cytokine production by IL-10 driven down-regulation of C/EBPβ and C/EBPδ. Int J Hyperthermia 29(5):455–463

    Article  CAS  PubMed  Google Scholar 

  • Born A, Henen MA, Vögeli B (2019) Activity and affinity of Pin1 variants. Molecules 25(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E et al (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2(9):645–652

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster PS, Zhang GF, Yamawaki R (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 22(15):6650–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buiting K, Williams C, Horsthemke B (2016) Angelman syndrome - insights into a rare neurogenetic disorder. Nat Rev Neurol 12(10):584–593

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    Article  CAS  PubMed  Google Scholar 

  • Carrascosa JL, Llorca O, Valpuesta JM (2001) Structural comparison of prokaryotic and eukaryotic chaperonins. Micron 32(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo D, Giacomelli A, Minisci D, Astuti N, Meraviglia P, Gervasoni C (2020) Association of HIV infection with epilepsy and other comorbid conditions. AIDS Behav 24(4):1051–1055

    Article  PubMed  Google Scholar 

  • Celada P, Puig MV, Artigas F (2013) Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 7:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CC, Chen SD, Lin TK, Chang WN, Liou CW, Chang AY, Chan SH, Chuang YC (2014) Heat shock protein 70 protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus via inhibition of nuclear factor-κB activation-induced nitric oxide synthase II expression. Neurobiol Dis 62:241–249

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zheng G, Guo H, Shi ZN (2014) Role of endoplasmic reticulum stress via the PERK signaling pathway in brain injury from status epilepticus. J Mol Neurosci 53(4):677–683

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Choi H, Hirsch LJ, Katz A, Legge A, Buchsbaum R, Detyniecki K (2017) Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav 76:24–31

    Article  PubMed  Google Scholar 

  • Chen Y, Hou X, Pang J, Yang F, Li A, Lin S, Lin N, Lee TH, Liu H (2022) The role of peptidyl-prolyl isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci 15:1006419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Koh S (2008) Role of brain inflammation in epileptogenesis. Yonsei Med J 49(1):1–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi J, Nordli DR, Alden TD, DiPatri A, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V, Koh S (2009) Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Cornford EM, Hyman S, Cornford ME, Landaw EM, Delgado-Escueta AV (1998) Interictal seizure resections show two configurations of endothelial Glut1 glucose transporter in the human blood-brain barrier. J Cereb Blood Flow Metab 18(1):26–42

    Article  CAS  PubMed  Google Scholar 

  • Correll CM (2013) Antibodies in epilepsy. Curr Neurol Neurosci Rep 13(5):348

    Article  PubMed  Google Scholar 

  • Coss RA, Sedar AW, Sistrun SS, Storck CW, Wang PH, Wachsberger PR (2002) Hsp27 protects the cytoskeleton and nucleus from the effects of 42 degrees C at pH 6.7 in CHO cells adapted to growth at pH 6.7. Int J Hyperthermia 18(3):216–232

    Article  CAS  PubMed  Google Scholar 

  • Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, Saint-Hilaire JM, Carmant L, Verner A, Lu WY et al (2002) Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 31(2):184–189

    Article  CAS  PubMed  Google Scholar 

  • Coulter DA, Steinhäuser C (2015) Role of astrocytes in epilepsy. Cold Spring Harb Perspect Med 5(3):a022434

    Article  PubMed  PubMed Central  Google Scholar 

  • Crespel A, Coubes P, Rousset MC, Brana C, Rougier A, Rondouin G, Bockaert J, Baldy-Moulinier M, Lerner-Natoli M (2002) Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res 952(2):159–169

    Article  CAS  PubMed  Google Scholar 

  • Cyr DM, Ramos CH (2015) Specification of Hsp70 function by Type I and Type II Hsp40. Subcell Biochem 78:91–102

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  • De Mena L, Chhangani D, Fernandez-Funez P, Rincon-Limas DE (2017) secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids. Fly (austin) 11(3):179–184

    Article  PubMed  Google Scholar 

  • Demyanenko S, Nikul V, Rodkin S, Davletshin A, Evgen’ev MB, Garbuz DG (2021) Exogenous recombinant Hsp70 mediates neuroprotection after photothrombotic stroke. Cell Stress Chaperones 26(1):103–114

    Article  PubMed  Google Scholar 

  • Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36(3):174–184

    Article  CAS  PubMed  Google Scholar 

  • Di XJ, Han DY, Wang YJ, Chance MR, Mu TW (2013) SAHA enhances proteostasis of epilepsy-associated α1(A322D)β2γ2 GABA(A) receptors. Chem Biol 20(12):1456–1468

    Article  CAS  PubMed  Google Scholar 

  • Di XJ, Wang YJ, Han DY, Fu YL, Duerfeldt AS, Blagg BS, Mu TW (2016) Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 protein-mediated endoplasmic reticulum-associated degradation. J Biol Chem 291(18):9526–9539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di XJ, Wang YJ, Cotter E, Wang M, Whittsette AL, Han DY, Sangwung P, Brown R, Lynch JW, Keramidas A et al (2021) Proteostasis regulators restore function of epilepsy-associated GABA. Cell Chem Biol 28(1):46-59.e47

    Article  CAS  PubMed  Google Scholar 

  • Dierick I, Irobi J, De Jonghe P, Timmerman V (2005) Small heat shock proteins in inherited peripheral neuropathies. Ann Med 37(6):413–422

    Article  CAS  PubMed  Google Scholar 

  • Duncan EJ, Cheetham ME, Chapple JP, van der Spuy J (2015) The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcell Biochem 78:243–273

    Article  CAS  PubMed  Google Scholar 

  • Edvardson S, Cinnamon Y, Ta-Shma A, Shaag A, Yim YI, Zenvirt S, Jalas C, Lesage S, Brice A, Taraboulos A et al (2012) A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS ONE 7(5):e36458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekimova IV, Nitsinskaya LE, Romanova IV, Pastukhov YF, Margulis BA, Guzhova IV (2010) Exogenous protein Hsp70/Hsc70 can penetrate into brain structures and attenuate the severity of chemically-induced seizures. J Neurochem 115(4):1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Elger CE, Hoppe C (2018) Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol 17(3):279–288

    Article  PubMed  Google Scholar 

  • Elsayed LE, Drouet V, Usenko T, Mohammed IN, Hamed AA, Elseed MA, Salih MA, Koko ME, Mohamed AY, Siddig RA et al (2016) A novel nonsense mutation in DNAJC6 expands the phenotype of autosomal-recessive juvenile-onset Parkinson’s disease. Ann Neurol 79(2):335–337

    Article  PubMed  Google Scholar 

  • Evgen’ev MB, Garbuz DG, Zatsepina OG (2014) Heat shock proteins and whole body adaptation to extreme environments. Springer, Dordrecht

    Book  Google Scholar 

  • Evgen’ev M, Bobkova N, Krasnov G, Garbuz D, Funikov S, Kudryavtseva A, Kulikov A, Samokhin A, Maltsev A, Nesterova I (2019) The effect of human HSP70 administration on a mouse model of Alzheimer’s disease strongly depends on transgenicity and age. J Alzheimers Dis 67(4):1391–1404

    Article  PubMed  Google Scholar 

  • Evgen’ev MB, Onikienko SB, Chuvakova LN, Garbuz DG, Zatsepina OG (2023) The role of Hsp70 in adaptation to adverse conditions and its possible medical application. Front Biosci (Landmark Ed) 28(2):25

    Article  PubMed  Google Scholar 

  • Falco-Walter JJ, Scheffer IE, Fisher RS (2018) The new definition and classification of seizures and epilepsy. Epilepsy Res 139:73–79

    Article  PubMed  Google Scholar 

  • Farrokh S, Tahsili-Fahadan P, Ritzl EK, Lewin JJ, Mirski MA (2018) Antiepileptic drugs in critically ill patients. Crit Care 22(1):153

    Article  PubMed  PubMed Central  Google Scholar 

  • Feyissa AM, Hasan TF, Meschia JF (2019) Stroke-related epilepsy. Eur J Neurol 26(1):18-e13

    Article  CAS  PubMed  Google Scholar 

  • Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon C, Dykeman J, Pringsheim T, Lorenzetti DL, Jetté N (2017) Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology 88(3):296–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Fordington S, Manford M (2020) A review of seizures and epilepsy following traumatic brain injury. J Neurol 267(10):3105–3111

    Article  PubMed  PubMed Central  Google Scholar 

  • Franco A, Bentes C, de Carvalho M, Pereira P, Pimentel J, Conceição I (2016) Epileptic seizures as a presentation of central nervous system involvement in TTR Val30Met-FAP. J Neurol 263(11):2336–2338

    Article  PubMed  Google Scholar 

  • Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW (2005) The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 21(5):379–392

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM (2008) Epilepsy, E/I balance and GABA(A) receptor plasticity. Front Mol Neurosci 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu J, Tao T, Li Z, Chen Y, Li J, Peng L (2020) The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 131:110658

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa DG (2005) Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav 7(Suppl 3):S3-11

    Article  PubMed  Google Scholar 

  • Gabai VL, Meriin AB, Yaglom JA, Volloch VZ, Sherman MY (1998) Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438(1–2):1–4

    Article  CAS  PubMed  Google Scholar 

  • Galovic M, Ferreira-Atuesta C, Abraira L, Döhler N, Sinka L, Brigo F, Bentes C, Zelano J, Koepp MJ (2021) Seizures and epilepsy after stroke: epidemiology, biomarkers and management. Drugs Aging 38(4):285–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Gammazza AM, Colangeli R, Orban G, Pierucci M, Gennaro GD, Bello ML, D’Aniello A, Bucchieri F, Pomara C, Valentino M, Muscat R, Benigno A, Zummo G, de Macario EC, Cappello F, Giovanni GD, Macario ALJ (2015) Hsp60 response in experimental and human temporal lobe epilepsy. Sci Rep 5:9434

    Article  CAS  PubMed Central  Google Scholar 

  • Garbuz DG, Davletshin AA, Litvinova SA, Fedotova IB, Surina NM, Poletaeva II (2022) Rodent models of audiogenic epilepsy: genetic aspects, advantages, current problems and perspectives. Biomedicines 10(11):2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13(14):2061–2070

    Article  CAS  PubMed  Google Scholar 

  • Gass P, Prior P, Kiessling M (1995) Correlation between seizure intensity and stress protein expression after limbic epilepsy in the rat brain. Neuroscience 65(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Geis C, Planagumà J, Carreño M, Graus F, Dalmau J (2019) Autoimmune seizures and epilepsy. J Clin Invest 129(3):926–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh C, Hossain M, Solanki J, Najm IM, Marchi N, Janigro D (2017) Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells. Epilepsia 58(4):576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh C, Hossain M, Mishra S, Khan S, Gonzalez-Martinez J, Marchi N, Janigro D, Bingaman W, Najm I (2018) Modulation of glucocorticoid receptor in human epileptic endothelial cells impacts drug biotransformation in an in vitro blood-brain barrier model. Epilepsia 59(11):2049–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gidalevitz T, Stevens F, Argon Y (2013) Orchestration of secretory protein folding by ER chaperones. Biochim Biophys Acta 11:2410–2424

    Google Scholar 

  • Gonzalez MF, Shiraishi K, Hisanaga K, Sagar SM, Mandabach M, Sharp FR (1989) Heat shock proteins as markers of neural injury. Brain Res Mol Brain Res 6(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Gorenberg EL, Chandra SS (2017) The role of co-chaperones in synaptic proteostasis and neurodegenerative disease. Front Neurosci 11:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Göthel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55(3):423–436

    Article  PubMed  Google Scholar 

  • Green JL, Dos Santos WF, Fontana ACK (2021) Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: opportunities for novel therapeutics development. Biochem Pharmacol 193:114786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gripper LB, Welburn SC (2017) The causal relationship between neurocysticercosis infection and the development of epilepsy - a systematic review. Infect Dis Poverty 6(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Gualtieri F, Nowakowska M, von Rüden EL, Seiffert I, Potschka H (2019) Epileptogenesis-associated alterations of heat shock protein 70 in a rat post-status epilepticus model. Neuroscience 415:44–58

    Article  CAS  PubMed  Google Scholar 

  • Han DY, Guan BJ, Wang YJ, Hatzoglou M, Mu TW (2015) L-type calcium channel blockers enhance trafficking and function of epilepsy-associated α1(D219N) subunits of GABA(A) receptors. ACS Chem Biol 10(9):2135–2148

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Watanabe K, Nishimura T, Iyo M, Shirayama Y, Minabe Y (1998) Behavioral changes and expression of heat shock protein hsp-70 mRNA, brain-derived neurotrophic factor mRNA, and cyclooxygenase-2 mRNA in rat brain following seizures induced by systemic administration of kainic acid. Brain Res 804(2):212–223

    Article  CAS  PubMed  Google Scholar 

  • Henshall DC (2007) Apoptosis signalling pathways in seizure-induced neuronal death and epilepsy. Biochem Soc Trans 35(Pt 2):421–423

    Article  CAS  PubMed  Google Scholar 

  • Heron SE, Scheffer IE, Berkovic SF, Dibbens LM, Mulley JC (2007) Channelopathies in idiopathic epilepsy. Neurotherapeutics 4(2):295–304

    Article  CAS  PubMed  Google Scholar 

  • Hightower LE, Guidon PT (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand MS, Dahl HH, Damiano JA, Smith RJ, Scheffer IE, Berkovic SF (2013) Recent advances in the molecular genetics of epilepsy. J Med Genet 50(5):271–279

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T, Murao N, Namba T, Takehara M, Adachi H, Katsuno M, Sobue G, Matsushima T, Suzuki T, Mizushima T (2011) Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci 31(14):5225–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain M, Williams S, Ferguson L, Bingaman W, Ghosh A, Najm IM, Ghosh C (2020) Heat shock proteins accelerate the maturation of brain endothelial cell glucocorticoid receptor in focal human drug-resistant epilepsy. Mol Neurobiol 57(11):4511–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Yang F, Li A, Zhao D, Ma N, Chen L, Lin S, Lin Y, Wang L, Yan X et al (2021) The Pin1-CaMKII-AMPA receptor axis regulates epileptic susceptibility. Cereb Cortex 31(6):3082–3095

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu CC, Davis KM, Jin H, Foos T, Floor E, Chen W, Tyburski JB, Yang CY, Schloss JV, Wu JY (2000) Association of L-glutamic acid decarboxylase to the 70-kDa heat shock protein as a potential anchoring mechanism to synaptic vesicles. J Biol Chem 275(27):20822–20828

    Article  CAS  PubMed  Google Scholar 

  • Hsu JH, Yang RC, Lin SJ, Liou SF, Dai ZK, Yeh JL, Wu JR (2014) Exogenous heat shock cognate protein 70 pretreatment attenuates cardiac and hepatic dysfunction with associated anti-inflammatory responses in experimental septic shock. Shock 42(6):540–547

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Zhou J, Lu Y, Guan L, Wei NN, Tang YQ, Wang K (2019) Inhibition of Hsp70 suppresses neuronal hyperexcitability and attenuates epilepsy by enhancing A-type potassium current. Cell Rep 26(1):168-181.e164

    Article  CAS  PubMed  Google Scholar 

  • Hughes JR (2009) Absence seizures: a review of recent reports with new concepts. Epilepsy Behav 15(4):404–412

    Article  PubMed  Google Scholar 

  • Husari KS, Dubey D (2019) Autoimmune epilepsy. Neurotherapeutics 16(3):685–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17(21):6124–6134

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240

    Article  CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268(3):1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Janigro D (1999) Blood-brain barrier, ion homeostatis and epilepsy: possible implications towards the understanding of ketogenic diet mechanisms. Epilepsy Res 37(3):223–232

    Article  CAS  PubMed  Google Scholar 

  • Jeon AR, Kim JE (2018) PDI knockdown inhibits seizure activity in acute seizure and chronic epilepsy rat models via. Front Cell Neurosci 12:438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josephson CB, Jetté N (2017) Psychiatric comorbidities in epilepsy. Int Rev Psychiatry 29(5):409–424

    Article  PubMed  Google Scholar 

  • Jung J, Mauguière F, Clerc-Renaud P, Ollagnon E, Mousson de Camaret B, Ryvlin P (2007) NARP mitochondriopathy: an unusual cause of progressive myoclonic epilepsy. Neurology 68(17):1429–1430

    Article  CAS  PubMed  Google Scholar 

  • Kakimura J, Kitamura Y, Takata K, Umeki M, Suzuki S, Shibagaki K, Taniguchi T, Nomura Y, Gebicke-Haerter PJ, Smith MA et al (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 16(6):601–603

    Article  CAS  PubMed  Google Scholar 

  • Kalwy SA, Akbar MT, Coffin RS, de Belleroche J, Latchman DS (2003) Heat shock protein 27 delivered via a herpes simplex virus vector can protect neurons of the hippocampus against kainic-acid-induced cell loss. Brain Res Mol Brain Res 111(1–2):91–103

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111

    Article  CAS  PubMed  Google Scholar 

  • Kapur J (2018) Role of NMDA receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open 3(Suppl 2):165–168

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato K, Katoh-Semba R, Takeuchi IK, Ito H, Kamei K (1999) Responses of heat shock proteins hsp27, alphaB-crystallin, and hsp70 in rat brain after kainic acid-induced seizure activity. J Neurochem 73(1):229–236

    Article  CAS  PubMed  Google Scholar 

  • Kelly S, Zhang ZJ, Zhao H, Xu L, Giffard RG, Sapolsky RM, Yenari MA, Steinberg GK (2002) Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 52(2):160–167

    Article  CAS  PubMed  Google Scholar 

  • Kezuka D, Tkarada-Iemata M, Hattori T, Mori K, Takahashi R, Kitao Y, Hori O (2016) Deletion of Atf6α enhances kainate-induced neuronal death in mice. Neurochem Int 92:67–74

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Ko AR, Hyun HW, Min SJ, Kim JE (2017) PDI regulates seizure activity via NMDA receptor redox in rats. Sci Rep 7:42491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkegaard T, Gray J, Priestman DA, Wallom KL, Atkins J, Olsen OD, Klein A, Drndarski S, Petersen NH, Ingemann L et al (2016) Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med 8(355):355ra118

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirschstein T, Mikkat S, Mikkat U, Bender R, Kreutzer M, Schulz R, Köhling R, Glocker MO (2012) The 27-kDa heat shock protein (HSP27) is a reliable hippocampal marker of full development of pilocarpine-induced status epilepticus. Epilepsy Res 98(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129(4):1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin CL (2012) Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol Dis 47(2):145–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar Y, Tatu U (2003) Stress protein flux during recovery from simulated ischemia: induced heat shock protein 70 confers cytoprotection by suppressing JNK activation and inhibiting apoptotic cell death. Proteomics 3(4):513–526

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Roy S, Behera BK, Das BK (2022) Heat shock proteins (Hsps) in cellular homeostasis: a promising tool for health management in crustacean aquaculture. Life (Basel) 12(11):1777

    CAS  PubMed  Google Scholar 

  • Kustanova GA, Murashev AN, Karpov VL, Margulis BA, Guzhova IV, Prokhorenko IR, Grachev SV, Evgen’ev MB (2006) Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones 11(3):276–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauriat TL, Schmeidler J, McInnes LA (2007) Early rapid rise in EAAT2 expression follows the period of maximal seizure susceptibility in human brain. Neurosci Lett 412(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Leak RK (2014) Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 8(4):293–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DS, Kim JE (2020) PDI-mediated reduction of disulfide bond on PSD95 increases spontaneous seizure activity by regulating NR2A-PSD95 interaction in epileptic rats independent of. Int J Mol Sci 21(6):2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DS, Kim JE (2021) Protein disulfide isomerase-mediated S-nitrosylation facilitates surface expression of P2X7 receptor following status epilepticus. J Neuroinflammation 18(1):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Lee JJ, Seo JS (2005) HSP70 deficiency results in activation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 280(8):6634–6641

    Article  CAS  PubMed  Google Scholar 

  • Lee DS, Kim TH, Park H, Kim JE (2022) CDDO-Me attenuates clasmatodendrosis in CA1 astrocyte by inhibiting HSP25-AKT mediated DRP1-S637 phosphorylation in chronic epilepsy rats. Int J Mol Sci 23(9):4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonardi M, Ustun TB (2002) The global burden of epilepsy. Epilepsia 43(Suppl 6):21–25

    Article  PubMed  Google Scholar 

  • Lim A, Thomas RH (2020) The mitochondrial epilepsies. Eur J Paediatr Neurol 24:47–52

    Article  PubMed  Google Scholar 

  • Lin Lin Lee V, Kar Meng Choo B, Chung YS, Kundap PU, Kumari Y, Shaikh MF (2018) Treatment, therapy and management of metabolic epilepsy: a systematic review. Int J Mol Sci 19(3):871

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G, Guo H, Guo C, Zhao S, Gong D, Zhao Y (2011) Involvement of IRE1α signaling in the hippocampus in patients with mesial temporal lobe epilepsy. Brain Res Bull 84(1):94–102

    Article  CAS  PubMed  Google Scholar 

  • Lively S, Brown IR (2008) Extracellular matrix protein SC1/hevin in the hippocampus following pilocarpine-induced status epilepticus. J Neurochem 107(5):1335–1346

    Article  CAS  PubMed  Google Scholar 

  • Lively S, Brown IR (2011) Induction of heat shock proteins in the adult rat cerebral cortex following pilocarpine-induced status epilepticus. Brain Res 1368:271–280

    Article  CAS  PubMed  Google Scholar 

  • Löscher W (2017) Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res 42(7):1873–1888

    Article  PubMed  Google Scholar 

  • Löscher W, Klitgaard H, Twyman RE, Schmidt D (2013) New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 12(10):757–776

    Article  PubMed  Google Scholar 

  • Lossin C, Rhodes TH, Desai RR, Vanoye CG, Wang D, Carniciu S, Devinsky O, George AL (2003) Epilepsy-associated dysfunction in the voltage-gated neuronal sodium channel SCN1A. J Neurosci 23(36):11289–11295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magrané J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24(7):1700–1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Malyshev S, Alekseeva T, Khachatryan W, Galagudza M (2019) Pathogenesis of drug resistant epilepsy. Epilepsy and Paroxysmal Conditions 11(1):79–87

    Article  Google Scholar 

  • Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, Hallene K, Diglaw T, Franic L, Najm I et al (2007) Seizure-promoting effect of blood-brain barrier disruption. Epilepsia 48(4):732–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T et al (2009) Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 33(2):171–181

    Article  CAS  PubMed  Google Scholar 

  • Margineanu DG, Klitgaard H (2009) Mechanisms of drug resistance in epilepsy: relevance for antiepileptic drug discovery. Expert Opin Drug Discov 4(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Marzec M, Eletto D, Argon Y (2012) GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 1823(3):774–787

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP (2010) Gymnastics of molecular chaperones. Mol Cell 39(3):321–331

    Article  CAS  PubMed  Google Scholar 

  • McKeown-Longo PJ, Higgins PJ (2017) Integration of canonical and noncanonical pathways in TLR4 signaling: complex regulation of the wound repair program. Adv Wound Care (new Rochelle) 6(10):320–329

    Article  PubMed  Google Scholar 

  • McNamara JO, Huang YZ, Leonard AS (2006) Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 2006(356):12

    Article  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271(28):16510–16514

    Article  CAS  PubMed  Google Scholar 

  • Melnick J, Argon Y (1995) Molecular chaperones and the biosynthesis of antigen receptors. Immunol Today 16(5):243–250

    Article  CAS  PubMed  Google Scholar 

  • Mihály A, Bozóky B (1984) Immunohistochemical localization of extravasated serum albumin in the hippocampus of human subjects with partial and generalized epilepsies and epileptiform convulsions. Acta Neuropathol 65(1):25–34

    Article  PubMed  Google Scholar 

  • Morimoto K, Sato H, Yamamoto Y, Watanabe T, Suwaki H (1997) Antiepileptic effects of tiagabine, a selective GABA uptake inhibitor, in the rat kindling model of temporal lobe epilepsy. Epilepsia 38(9):966–974

    Article  CAS  PubMed  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7(2):167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Arisi GM, Mims K, Hollingsworth G, O’Neil K, Shapiro LA (2020) Neuroinflammatory mechanisms of post-traumatic epilepsy. J Neuroinflammation 17(1):193

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakatsu Y, Matsunaga Y, Ueda K, Yamamotoya T, Inoue Y, Inoue MK, Mizuno Y, Kushiyama A, Ono H, Fujishiro M et al (2020) Development of Pin1 inhibitors and their potential as therapeutic agents. Curr Med Chem 27(20):3314–3329

    Article  CAS  PubMed  Google Scholar 

  • Neupert W, Hartl FU, Craig EA, Pfanner N (1990) How do polypeptides cross the mitochondrial membranes? Cell 63(3):447–450

    Article  CAS  PubMed  Google Scholar 

  • Ng J, Cortès-Saladelafont E, Abela L, Termsarasab P, Mankad K, Sudhakar S, Gorman KM, Heales SJR, Pope S, Biassoni L et al (2020) DNAJC6 Mutations disrupt dopamine homeostasis in juvenile parkinsonism-dystonia. Mov Disord 35(8):1357–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen M, Krainc D (2018) LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson’s disease. Proc Natl Acad Sci U S A 115(21):5576–5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikbakht F, Mohammadkhanizadeh A, Mohammadi E (2020) How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Mult Scler Relat Disord 46:102535

    Article  PubMed  PubMed Central  Google Scholar 

  • Nolan D, Fink J (2018) Genetics of epilepsy. Handb Clin Neurol 148:467–491

    Article  PubMed  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115(Pt 14):2809–2816

    Article  CAS  PubMed  Google Scholar 

  • Okudan ZV, Özkara Ç (2018) Reflex epilepsy: triggers and management strategies. Neuropsychiatr Dis Treat 14:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oraby AM, Raouf ER, El-Saied MM, Abou-Khadra MK, Helal SI, Hashish AF (2017) Cognitive function and heat shock protein 70 in children with temporal lobe epilepsy. J Child Neurol 32(1):41–45

    Article  PubMed  Google Scholar 

  • Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, Reid CA (2018) Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol Rev 70(1):142–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palomino SM, Levine AA, Wahl J, Liktor-Busa E, Streicher JM, Largent-Milnes TM (2022) Inhibition of HSP90 preserves blood-brain barrier integrity after cortical spreading depression. Pharmaceutics 14(8):1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel DC, Tewari BP, Chaunsali L, Sontheimer H (2019) Neuron-glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci 20(5):282–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelham HR (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46(7):959–961

    Article  CAS  PubMed  Google Scholar 

  • Peng YC, Wang S, Zhang Y, Huang LJ, Wang XL, Peng Y (2019) Hsp90β inhibitors prevent GLT-1 degradation but have no beneficial efficacy on absence epilepsy. J Asian Nat Prod Res 21(9):905–915

    Article  CAS  PubMed  Google Scholar 

  • Persike DS, Puccinelli RPA, Fernandes MJDS (2021) Adenosine A1 receptor agonist (R-PIA) before pilocarpine modulates pro- and anti-apoptotic factors in an animal model of epilepsy. Pharmaceuticals (Basel) 14(4):376

    Article  CAS  PubMed  Google Scholar 

  • Peterson AR, Binder DK (2019) Post-translational regulation of GLT-1 in neurological diseases and its potential as an effective therapeutic target. Front Mol Neurosci 12:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plumier JC, Armstrong JN, Landry J, Babity JM, Robertson HA, Currie RW (1996) Expression of the 27,000 mol. wt heat shock protein following kainic acid-induced status epilepticus in the rat. Neuroscience 75(3):849–856

    Article  CAS  PubMed  Google Scholar 

  • Porter RJ (1993) The absence epilepsies. Epilepsia 34(Suppl 3):S42-48

    PubMed  Google Scholar 

  • Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid CA, Bahlo M et al (2009) A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 29(2):371–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pracucci E, Pillai V, Lamers D, Parra R, Landi S (2021) Neuroinflammation: a signature or a cause of epilepsy? Int J Mol Sci 22(13):6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proft J, Rzhepetskyy Y, Lazniewska J, Zhang FX, Cain SM, Snutch TP, Zamponi GW, Weiss N (2017) The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca. Sci Rep 7(1):11513

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63(22):2560–2570

    Article  CAS  PubMed  Google Scholar 

  • Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29(1):142–160

    Article  CAS  PubMed  Google Scholar 

  • Ravizza T, Balosso S, Vezzani A (2011) Inflammation and prevention of epileptogenesis. Neurosci Lett 497(3):223–230

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Padmanabha H, Mahale R, Mailankody P, Arunachal G (2021) DNAJC6 mutation causing cranial-onset dystonia with tremor dominant levodopa non-responsive parkinsonism: a novel phenotype. Parkinsonism Relat Disord 89:1–3

    Article  CAS  PubMed  Google Scholar 

  • Reddy C, Saini AG (2021) Metabolic epilepsy. Indian J Pediatr 88(10):1025–1032

    Article  PubMed  Google Scholar 

  • Rempe RG, Hartz AMS, Bauer B (2016) Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab 36(9):1481–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riazi K, Galic MA, Pittman QJ (2010) Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res 89(1):34–42

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Rouard M, Bass J, Grigorescu F, Garrett TP, Ward CW, Lipkind G, Jaffiole C, Steiner DF, Bell GI (1999) Congenital insulin resistance associated with a conformational alteration in a conserved beta-sheet in the insulin receptor L1 domain. J Biol Chem 274(26):18487–18491

    Article  CAS  PubMed  Google Scholar 

  • Rozhkova E, Yurinskaya M, Zatsepina O, Garbuz D, Karpov V, Surkov S, Murashev A, Ostrov V, Margulis B, Evgen’ev M et al (2010) Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann N Y Acad Sci 1197:94–107

    Article  CAS  PubMed  Google Scholar 

  • Sahin D, Karadenizli S, Kasap M, Oztas B, Kir HM, Akpinar G, Ates N (2018) Decreased ERp57 expression in WAG/Rij rats thalamus and cortex: possible correlation with absence epilepsy. Protein Pept Lett 25(4):398–404

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2(8):476–483

    Article  CAS  PubMed  Google Scholar 

  • Salvador E, Shityakov S, Förster C (2014) Glucocorticoids and endothelial cell barrier function. Cell Tissue Res 355(3):597–605

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson B, Goldyne M, Granström E, Hamberg M, Hammarström S, Malmsten C (1978) Prostaglandins and thromboxanes. Annu Rev Biochem 47:997–1029

    Article  CAS  PubMed  Google Scholar 

  • Sanz P, Garcia-Gimeno MA (2020) Reactive glia inflammatory signaling pathways and epilepsy. Int J Mol Sci 21(11):4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshé SL et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):512–521

    Article  PubMed  PubMed Central  Google Scholar 

  • Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Scieglińska D, Widłak W, Rusin M, Markkula M, Krawczyk Z (1997) Expression of the testis-specific HSP70-related gene (hst70 gene) in somatic non-testicular rat tissues revealed by RT-PCR and transgenic mice analysis. Cell Biol Int 21(12):813–821

    Article  PubMed  Google Scholar 

  • Scieglinska D, Krawczyk Z (2015) Expression, function, and regulation of the testis-enriched heat shock HSPA2 gene in rodents and humans. Cell Stress Chaperones 20(2):221–235

    Article  CAS  PubMed  Google Scholar 

  • Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, Xu Q (2017) Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med 214(2):547–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha L, Chen T, Deng Y, Du T, Ma K, Zhu W, Shen Y, Xu Q (2020) Hsp90 inhibitor HSP990 in very low dose upregulates EAAT2 and exerts potent antiepileptic activity. Theranostics 10(18):8415–8429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng J, Liu S, Qin H, Li B, Zhang X (2018) Drug-resistant epilepsy and surgery. Curr Neuropharmacol 16(1):17–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, Amieux PS, Holt CE (2016) Dynamic axonal translation in developing and mature visual circuits. Cell 166(1):181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh MK, Sharma B, Tiwari PK (2017) The small heat shock protein Hsp27: present understanding and future prospects. J Therm Biol 69:149–154

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Sahu K, Singh C, Singh A (2022) Lipopolysaccharide induced altered signaling pathways in various neurological disorders. Naunyn Schmiedebergs Arch Pharmacol 395(3):285–294

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2014) Astrogliosis Cold Spring Harb Perspect Biol 7(2):a020420

    Article  PubMed  Google Scholar 

  • Somji S, Todd JH, Sens MA, Garrett SH, Sens DA (1999) Expression of the constitutive and inducible forms of heat shock protein 70 in human proximal tubule cells exposed to heat, sodium arsenite, and CdCl(2). Environ Health Perspect 107(11):887–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soss SE, Rose KL, Hill S, Jouan S, Chazin WJ (2015) Biochemical and proteomic analysis of ubiquitination of Hsc70 and Hsp70 by the E3 ligase CHIP. PLoS ONE 10(5):e0128240

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43(3):219–227

    Article  PubMed  Google Scholar 

  • Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280(46):38729–38739

    Article  CAS  PubMed  Google Scholar 

  • Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA (2004) Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24(35):7707–7717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser L, Downes M, Kung J, Cross JH, De Haan M (2018) Prevalence and risk factors for autism spectrum disorder in epilepsy: a systematic review and meta-analysis. Dev Med Child Neurol 60(1):19–29

    Article  PubMed  Google Scholar 

  • Sulzbacher MM, Sulzbacher LM, Passos FR, Bilibio BLE, Althaus WF, Weizenmann L, de Oliveira K, Frizzo MN, Ludwig MS, Heck TG (2020) A single dose of eHSP72 attenuates sepsis severity in mice. Sci Rep 10(1):9198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zhang JR, Chen S (2017) Suppression of Alzheimer’s disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway. Exp Ther Med 14(6):5267–5274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Zhang Y, Chen G, Xiong Y, Wang X, Zhu B (2017) Down-regulation of Pin1 in temporal lobe epilepsy patients and mouse model. Neurochem Res 42(4):1211–1218

    Article  CAS  PubMed  Google Scholar 

  • Tao K, Cai Q, Zhang X, Zhu L, Liu Z, Li F, Wang Q, Liu L, Feng D (2020) Astrocytic histone deacetylase 2 facilitates delayed depression and memory impairment after subarachnoid hemorrhage by negatively regulating glutamate transporter-1. Ann Transl Med 8(11):691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tharp BR (2002) Neonatal seizures and syndromes. Epilepsia 43(Suppl 3):2–10

    Article  PubMed  Google Scholar 

  • Tissières A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84(3):389–398. https://doi.org/10.1016/0022-2836(74)90447-1.PMID4219221

    Article  PubMed  Google Scholar 

  • Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59(1):259–276

    Article  CAS  PubMed  Google Scholar 

  • Troyanova NI, Shevchenko MA, Boyko AA, Mirzoyev RR, Pertseva MA, Kovalenko EI, Sapozhnikov AM (2015) Modulating effect of extracellular HSP70 on generation of reactive oxigen species in populations of phagocytes. Bioorg Khim 41(3):305–315

    CAS  PubMed  Google Scholar 

  • Tsuchiya D, Hong S, Matsumori Y, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR (2003) Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ischemia, transient global ischemia, or kainic acid-induced seizures. Neurosurgery 53(5):1179–1187 (discussion 1187-1178)

    Article  PubMed  Google Scholar 

  • Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93(4):1621–1657

    Article  CAS  PubMed  Google Scholar 

  • Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46(11):1724–1743

    Article  CAS  PubMed  Google Scholar 

  • Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, Löscher W (2016) Infections, inflammation and epilepsy. Acta Neuropathol 131(2):211–234

    Article  CAS  PubMed  Google Scholar 

  • Vichaya EG, Malik S, Sominsky L, Ford BG, Spencer SJ, Dantzer R (2020) Microglia depletion fails to abrogate inflammation-induced sickness in mice and rats. J Neuroinflammation 17(1):172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidyasagar A, Wilson NA, Djamali A (2012) Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair 5(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Rüden EL, Wolf F, Keck M, Gualtieri F, Nowakowska M, Oglesbee M, Potschka H (2018) Genetic modulation of HSPA1A accelerates kindling progression and exerts pro-convulsant effects. Neuroscience 386:108–120

    Article  Google Scholar 

  • Vrinda M, Arun S, Srikumar BN, Kutty BM, Shankaranarayana Rao BS (2019) Temporal lobe epilepsy-induced neurodegeneration and cognitive deficits: implications for aging. J Chem Neuroanat 95:146–153

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lin ZJ, Liu L, Xu HQ, Shi YW, Yi YH, He N, Liao WP (2017) Epilepsy-associated genes. Seizure 44:11–20

    Article  CAS  PubMed  Google Scholar 

  • Weiler IJ, Spangler CC, Klintsova AY, Grossman AW, Kim SH, Bertaina-Anglade V, Khaliq H, de Vries FE, Lambers FA, Hatia F et al (2004) Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci U S A 101(50):17504–17509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C, Becker A, Frigerio F et al (2015) Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis 78:115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner FM, Coveñas R (2017) Classical neurotransmitters and neuropeptides involved in generalized epilepsy in a multi-neurotransmitter system: how to improve the antiepileptic effect? Epilepsy Behav 71(Pt B):124–129

    Article  PubMed  Google Scholar 

  • Westcott R, Chung N, Ghosh A, Ferguson L, Bingaman W, Najm IM, Ghosh C (2022) Glucocorticoid receptor β isoform predominates in the human dysplastic brain region and is modulated by age, sex, and antiseizure medication. Int J Mol Sci 23(9):4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 18(3):1517–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699(1–2):35–44

    Article  CAS  PubMed  Google Scholar 

  • Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119(Pt 4):615–623

    Article  CAS  PubMed  Google Scholar 

  • Wong M (2019) The role of glia in epilepsy intellectual disability and other neurodevelopmental disorders in tuberous sclerosis complex. J Neurodev Disord 11(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodford MR, Sager RA, Marris E, Dunn DM, Blanden AR, Murphy RL, Rensing N, Shapiro O, Panaretou B, Chr Prodromou, Loh SN, Gutmann DH, Bourboulia D, Bratslavsky G, Wong M, Mollapour M (2017) Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients. The EMBO J 36(24):3650

    Article  CAS  PubMed  Google Scholar 

  • Woodford MR, Hughes M, Sager RA, Backe SJ, Baker-Williams AJ, Bratslavsky MS, Jacob JM, Shapiro O, Wong M, Bratslavsky G, Bourboulia D, Mollapour M (2019) Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity. Oncotarget 10(56):5824

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu W, Xue X, Chen Y, Zheng N, Wang J (2022) Targeting prolyl isomerase Pin1 as a promising strategy to overcome resistance to cancer therapies. Pharmacol Res 184:106456

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A 90(15):7074–7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto A, Murphy N, Schindler CK, So NK, Stohr S, Taki W, Prehn JH, Henshall DC (2006) Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy. J Neuropathol Exp Neurol 65(3):217–225

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Osanai T, Nishizaki F, Sukekawa T, Izumiyama K, Sagara S, Okumura K (2012) Matrix metalloprotein-9 activation under cell-to-cell interaction between endothelial cells and monocytes: possible role of hypoxia and tumor necrosis factor-α. Heart Vessels 27(6):624–633

    Article  PubMed  Google Scholar 

  • Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA, Katona I, Castillo PE (2016) Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92(2):479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurinskaya M, Zatsepina OG, Vinokurov MG, Bobkova NV, Garbuz DG, Morozov AV, Kulikova DA, Mitkevich VA, Makarov AA, Funikov SY et al (2015) The fate of exogenous human HSP70 introduced into animal cells by different means. Curr Drug Deliv 12(5):524–532

    Article  CAS  PubMed  Google Scholar 

  • Zeng LH et al (2011) Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet 20(3):445–454

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Gelowitz DL, Lai CT, Boulton AA, Yu PH (1997) Gradation of kainic acid-induced rat limbic seizures and expression of hippocampal heat shock protein-70. Eur J Neurosci 9(4):760–769

    Article  CAS  PubMed  Google Scholar 

  • Zhang LL, Zeng LN, Li YP (2011) Side effects of phenobarbital in epilepsy: a systematic review. Epileptic Disord 13(4):349–365

    Article  PubMed  Google Scholar 

  • Zhou L, Tang X, Li X, Bai Y, Buxbaum JN, Chen G (2019) Identification of transthyretin as a novel interacting partner for the δ subunit of GABAA receptors. PLoS ONE 14(1):e0210094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480

    Article  CAS  PubMed  Google Scholar 

  • Zummo L, Vitale AM, Caruso Bavisotto C, De Curtis M, Garbelli R, Giallonardo AT, Di Bonaventura C, Fanella M, Conway de Macario E, Cappello F et al (2021) Molecular chaperones and miRNAs in epilepsy: pathogenic implications and therapeutic prospects. Int J Mol Sci 22(16):8601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was funded by the grants of the Russian Science Foundation No. 19–14-00167 (to D.G) and No. 17–74-300–30 (to M.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Evgen’ev.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 305 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davletshin, A.I., Matveeva, A.A., Poletaeva, I.I. et al. The role of molecular chaperones in the mechanisms of epileptogenesis. Cell Stress and Chaperones 28, 599–619 (2023). https://doi.org/10.1007/s12192-023-01378-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-023-01378-1

Keywords

Navigation