Skip to main content

Advertisement

Log in

Identification of a cuproptosis-related lncRNA prognostic signature in lung adenocarcinoma

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cuproptosis-related long non-coding RNA (lncRNA) diseases are associated with the occurrence and development of tumors. This study aimed to investigate whether cuproptosis-related lncRNA can predict the prognosis of patients with lung adenocarcinoma (LUAD).

Methods

Cuproptosis-related lncRNA prognosis (CLPS) model was successfully constructed through cox regression and lasso regression analyses. Then, the prognostic value of CLPS model was tested through the survival analysis, the ROC curve and the nomogram. Finally, the correlation of CLPS model with tumor immunity and tumor mutation burden was analyzed, and the potential susceptibility of drugs for LUAD were predicted.

Results

CLPS model for LUAD (AC090948.1, CRIM1-DT, AC026356.2, AC004832.5, AL161431.1) was successfully constructed, which has an independent prognostic value. Furthermore, the risk score of CLPS model was correlated with tumor immune characteristics and immune escape, which can predict the sensitivity of drugs including Cisplatin, Etoposide, Gemcitabine, and Erlotinib.

Conclusions

In conclusion, it was found that CLPS model was associated with tumor immunity and tumor mutation load, which also predicted four potentially sensitive drugs for LUAD patients at different risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med. 2020;41(1):1–24.

    Article  PubMed  Google Scholar 

  3. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman J, Chirieac LR, et al. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15(4):504–35.

    Article  PubMed  Google Scholar 

  4. Wang Y, Zhang L, Zhou F. Cuproptosis: a new form of programmed cell death. Cell Mol Immunol. 2022;19(8):867–8.

    Article  CAS  PubMed  Google Scholar 

  5. Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 2022;32(5):417–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yun Y, Wang Y, Yang E, Jing X. Cuproptosis-related gene - SLC31A1, FDX1 and ATP7B - polymorphisms are associated with risk of lung cancer. Pharmgenomics Pers Med. 2022;15:733–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang NN, Wang LH, Li Y, Fu SY, Xue X, Jia LN, et al. Targeting ALDH2 with disulfiram/copper reverses the resistance of cancer cells to microtubule inhibitors. Exp Cell Res. 2018;362(1):72–82.

    Article  PubMed  Google Scholar 

  8. Lu Y, Pan Q, Gao W, Pu Y, He B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B. 2022;10(33):6296-6306.

  9. Roth A, Diederichs S. Long noncoding RNAs in lung cancer. Curr Top Microbiol Immunol. 2016;394:57–110.

    PubMed  Google Scholar 

  10. Martinez-Terroba E, Dimitrova N. Long noncoding RNA amplified in lung cancer rewires cancer pathways. J Cell Biol. 2020;219(9):e202007098.

  11. McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol. 2021;75:38–48.

    Article  CAS  PubMed  Google Scholar 

  12. Braga EA, Fridman MV, Moscovtsev AA, Filippova EA, Dmitriev AA, Kushlinskii NE. LncRNAs in Ovarian cancer progression, metastasis, and main pathways: ceRNA and alternative Mechanisms. Int J Mol Sci. 2020;21(22):8855.

  13. Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med. 2021;11(4): e367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang L, Li Z, Wang R. Long noncoding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications (Review). Int J Oncol. 2019;55(3):585–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Q, Li X, Li XY, Huo JW, Lv FJ, Luo TY. Spectral CT in lung cancer: usefulness of iodine concentration for evaluation of tumor angiogenesis and prognosis. AJR Am J Roentgenol. 2020;215(3):595–602.

    Article  PubMed  Google Scholar 

  16. Dal Bello MG, Filiberti RA, Alama A, Orengo AM, Mussap M, Coco S, et al. The role of CEA, CYFRA21-1 and NSE in monitoring tumor response to Nivolumab in advanced non-small cell lung cancer (NSCLC) patients. J Transl Med. 2019;17(1):74.

    Article  Google Scholar 

  17. Shen Y, Peng X, Shen C. Identification and validation of immune-related lncRNA prognostic signature for breast cancer. Genomics. 2020;112(3):2640–6.

    Article  CAS  PubMed  Google Scholar 

  18. Liu SJ, Dang HX, Lim DA, Feng FY, Maher CA. Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. 2021;21(7):446–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wachsmann J, Peng F. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma. World J Gastroenterol. 2016;22(1):221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang S, Yin N, Li Y, Xiang T, Jiang W, Zhao X, et al. Copper-based metal-organic framework impedes triple-negative breast cancer metastasis via local estrogen deprivation and platelets blockade. J Nanobiotechnology. 2022;20(1):313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJ, et al. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics. 2016;8(9):874–86.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao K, Zhang Q, Zeng T, Zhang J, Song N, Wang Z. Identification and validation of a prognostic immune-related lncRNA signature in bladder cancer. Transl Androl Urol. 2021;10(3):1229–40.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shi GJ, Zhou Q, Zhu Q, Wang L, Jiang GQ. A novel prognostic model associated with the overall survival in patients with breast cancer based on lipid metabolism-related long noncoding RNAs. J Clin Lab Anal. 2022;36(6): e24384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Q, Cheng M, Fan Z, Jin Q, Cao P, Zhou G. Identification of cancer cell stemness-associated long noncoding rnas for predicting prognosis of patients with hepatocellular carcinoma. DNA Cell Biol. 2021;40(8):1087–100.

    Article  CAS  PubMed  Google Scholar 

  25. Shao J, Zhang B, Kuai L, Li Q. Integrated analysis of hypoxia-associated lncRNA signature to predict prognosis and immune microenvironment of lung adenocarcinoma patients. Bioengineered. 2021;12(1):6186–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu J, Zhang PJ, Zhang D, Chen ZH, Cao XC, Yu Y, et al. An autophagy-associated lncRNAs model for predicting the survival in non-small cell lung cancer patients. Front Genet. 2022;13: 919857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang H, Xu A, Li M, Han R, Wang E, Wu D, et al. Seven autophagy-related lncRNAs are associated with the tumor immune microenvironment in predicting survival risk of nonsmall cell lung cancer. Brief Funct Genomics. 2022;21(3):177–87.

    Article  CAS  PubMed  Google Scholar 

  28. Wang F, Lin H, Su Q, Li C. Cuproptosis-related lncRNA predict prognosis and immune response of lung adenocarcinoma. World J Surg Oncol. 2022;20(1):275.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hu Q, Wang R, Ma H, Zhang Z, Xue Q. Cuproptosis predicts the risk and clinical outcomes of lung adenocarcinoma. Front Oncol. 2022;12: 922332.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mo X, Hu D, Yang P, Li Y, Bashir S, Nai A, et al. A novel cuproptosis-related prognostic lncRNA signature and lncRNA MIR31HG/miR-193a-3p/TNFRSF21 regulatory axis in lung adenocarcinoma. Front Oncol. 2022;12: 927706.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550(7676):402–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Willumsen N, Thomsen LB, Bager CL, Jensen C, Karsdal MA. Quantification of altered tissue turnover in a liquid biopsy: a proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol Immunother. 2018;67(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  33. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. Intratumoral copper modulates pd-l1 expression and influences tumor immune evasion. Cancer Res. 2020;80(19):4129–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the The Cancer Genome Atlas (TCGA) network for sharing large amounts of data.

Author information

Authors and Affiliations

Authors

Contributions

RC conceived and designed the study, and drafted the manuscript. HL and QC collected, analyzed and interpreted the experimental data. CW revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qitian Chen or Changying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Luo, H., Chen, Q. et al. Identification of a cuproptosis-related lncRNA prognostic signature in lung adenocarcinoma. Clin Transl Oncol 25, 1617–1628 (2023). https://doi.org/10.1007/s12094-022-03057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03057-6

Keywords

Navigation