Skip to main content

Advertisement

Log in

Identification of a novel ADCC-related gene signature for predicting the prognosis and therapy response in lung adenocarcinoma

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Previous studies have largely neglected the role of ADCC in LUAD, and no study has systematically compiled ADCC-associated genes to create prognostic signatures.

Methods

In this study, 1564 LUAD patients, 2057 NSCLC patients, and more than 5000 patients with various cancer types from diverse cohorts were included. R package ConsensusClusterPlus was utilized to classify patients into different subtypes. A number of machine-learning algorithms were used to construct the ADCCRS. GSVA and ClusterProfiler were used for enrichment analyses, and IOBR was used to quantify immune cell infiltration level. GISTIC2.0 and maftools were used to analyze the CNV and SNV data. The Oncopredict package was used to predict drug information based on the GDSC1. Three immunotherapy cohorts were used to evaluate patient response to immunotherapy. The Seurat package was used to process single-cell data, the AUCell package was used to calculate cells’ geneset activity scores, and the Scissor algorithm was used to identify ADCCRS-associated cells.

Results

Through unsupervised clustering, two distinct subtypes of LUAD were identified, each exhibiting distinct clinical characteristics. The ADCCRS, consisted of 16 genes, was constructed by integrated machine-learning methods. The prognostic power of ADCCRS was validated in 28 independent datasets. Further, ADCCRS shows better predictive abilities than 102 previously published signatures in predicting LUAD patients’ survival. A nomogram incorporating ADCCRS and clinical features was constructed, demonstrating high predictive performance. ADCCRS positively correlates with patients’ gene mutation, and integrated analysis of bulk and single-cell transcriptome data revealed the association of ADCCRS with TME modulators. Cells representing high-ADCCRS phenotype exhibited more malignant features. LUAD patients with high ADCCRS levels exhibited sensitivity to chemotherapy and targeted therapy, while displaying resistance to immunotherapy. In pan-cancer analysis, ADCCRS still exhibited significant prognostic value and was found to be a risk factor for most cancer patients.

Conclusions

ADCCRS offers a critical prognostic insight for patients with LUAD, shedding light on the tumor microenvironment and forecasting treatment responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660. (Epub 20210204).

    Article  PubMed  Google Scholar 

  2. Little AG, Gay EG, Gaspar LE, Stewart AK. National survey of non-small cell lung cancer in the United States: epidemiology, pathology and patterns of care. Lung Cancer. 2007;57(3):253–60. https://doi.org/10.1016/j.lungcan.2007.03.012. (Epub 20070423).

    Article  PubMed  Google Scholar 

  3. Chang JT, Lee YM, Huang RS. The impact of the cancer genome atlas on lung cancer. Transl Res. 2015;166(6):568–85. https://doi.org/10.1016/j.trsl.2015.08.001. (Epub 20150810).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-Pd-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65. https://doi.org/10.1056/NEJMoa1200694. (Epub 20120602).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34–47. https://doi.org/10.1038/nri2206.

    Article  CAS  PubMed  Google Scholar 

  6. Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010;10(5):301–16. https://doi.org/10.1038/nri2761.

    Article  CAS  PubMed  Google Scholar 

  7. Fanger MW, Shen L, Graziano RF, Guyre PM. Cytotoxicity mediated by human Fc receptors for Igg. Immunol Today. 1989;10(3):92–9. https://doi.org/10.1016/0167-5699(89)90234-x.

    Article  CAS  PubMed  Google Scholar 

  8. Lyubchenko TA, Wurth GA, Zweifach A. Role of calcium influx in cytotoxic T lymphocyte lytic granule exocytosis during target cell killing. Immunity. 2001;15(5):847–59. https://doi.org/10.1016/s1074-7613(01)00233-3.

    Article  CAS  PubMed  Google Scholar 

  9. Patel D, Guo X, Ng S, Melchior M, Balderes P, Burtrum D, et al. Igg isotype, glycosylation, and Egfr expression determine the induction of antibody-dependent cellular cytotoxicity in vitro by cetuximab. Hum Antibodies. 2010;19(4):89–99. https://doi.org/10.3233/hab-2010-0232.

    Article  CAS  PubMed  Google Scholar 

  10. Prang N, Preithner S, Brischwein K, Göster P, Wöppel A, Müller J, et al. Cellular and complement-dependent cytotoxicity of Ep-Cam-specific monoclonal antibody Mt201 against breast cancer cell lines. Br J Cancer. 2005;92(2):342–9. https://doi.org/10.1038/sj.bjc.6602310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coënon L, Villalba M. From Cd16a biology to antibody-dependent cell-mediated cytotoxicity improvement. Front Immunol. 2022;13:913215. https://doi.org/10.3389/fimmu.2022.913215. (Epub 20220603).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies (Basel). 2020. https://doi.org/10.3390/antib9030034. (Epub 20200720).

    Article  PubMed  Google Scholar 

  13. Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer genome atlas (Tcga). Methods Mol Biol. 2016;1418:111–41. https://doi.org/10.1007/978-1-4939-3578-9_6.

    Article  PubMed  Google Scholar 

  14. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. Gistic2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41. https://doi.org/10.1186/gb-2011-12-4-r41. (Epub 20110428).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cbioportal. Sci Signal. 2013;6(269):l1. https://doi.org/10.1126/scisignal.2004088. (Epub 20130402).

    Article  CAS  Google Scholar 

  17. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. Tgfβ attenuates tumour response to Pd-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8. https://doi.org/10.1038/nature25501. (Epub 20180214).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. Tisch: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021;49(D1):D1420–30. https://doi.org/10.1093/nar/gkaa1020.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Guan M, Zhang X, Yu F, Lai F. Machine-learning and combined analysis of single-cell and bulk-Rna sequencing identified a Dc gene signature to predict prognosis and immunotherapy response for patients with lung adenocarcinoma. J Cancer Res Clin Oncol. 2023;149(15):13553–74. https://doi.org/10.1007/s00432-023-05151-w. (Epub 20230728).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The genecards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinform. 2016;54:1–3. https://doi.org/10.1002/cpbi.5. (Epub 20160620).

    Article  Google Scholar 

  21. Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, et al. A scalable scenic workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15(7):2247–76. https://doi.org/10.1038/s41596-020-0336-2. (Epub 20200619).

    Article  CAS  PubMed  Google Scholar 

  22. Wilkerson MD, Hayes DN. Consensusclusterplus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–3. https://doi.org/10.1093/bioinformatics/btq170. (Epub 20100428).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu G, Wang LG, Han Y, He QY. Clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118. (Epub 20120328).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hänzelmann S, Castelo R, Guinney J. Gsva: gene set variation analysis for microarray and Rna-Seq data. BMC Bioinform. 2013;14:7. https://doi.org/10.1186/1471-2105-14-7. (Epub 20130116).

    Article  Google Scholar 

  25. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. Iobr: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:687975. https://doi.org/10.3389/fimmu.2021.687975. (Epub 20210702).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun D, Guan X, Moran AE, Wu LY, Qian DZ, Schedin P, et al. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat Biotechnol. 2022;40(4):527–38. https://doi.org/10.1038/s41587-021-01091-3. (Epub 20211111).

    Article  CAS  PubMed  Google Scholar 

  27. Fang Z, Tian Y, Sui C, Guo Y, Hu X, Lai Y, et al. Single-cell transcriptomics of proliferative phase endometrium: systems analysis of cell-cell communication network using cellchat. Front Cell Dev Biol. 2022;10:919731. https://doi.org/10.3389/fcell.2022.919731. (Epub 20220722).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of drug sensitivity in cancer (Gdsc): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41((Database issue)):955–61. https://doi.org/10.1093/nar/gks1111. (Epub 20121123).

    Article  CAS  Google Scholar 

  29. Maeser D, Gruener RF, Huang RS. Oncopredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform. 2021. https://doi.org/10.1093/bib/bbab260.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu C, Zhang J, Wang K, Fan M, Hu Y. Fam117a is a new prognostic marker of lung adenocarcinoma and predicts sensitivity to Pd0332991. Evid Based Complem Alternat Med. 2022;2022:3945446. https://doi.org/10.1155/2022/3945446. (Epub 20220303).

    Article  Google Scholar 

  31. Shi X, Wu J, Liu Y, Jiang Y, Zhi C, Li J. Ero1l promotes Nsclc development by modulating cell cycle-related molecules. Cell Biol Int. 2020;44(12):2473–84. https://doi.org/10.1002/cbin.11454. (Epub 20200915).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagoya A, Sada R, Kimura H, Yamamoto H, Morishita K, Miyoshi E, et al. Ckap4 is a potential exosomal biomarker and therapeutic target for lung cancer. Transl Lung Cancer Res. 2023;12(3):408–26. https://doi.org/10.21037/tlcr-22-571. (Epub 20230317).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meng W, Meng J, Jiang H, Feng X, Wei D, Ding Q (2020) Fkbp4 accelerates malignant progression of non-small-cell lung cancer by activating the Akt/Mtor signaling pathway. Anal Cell Pathol (Amst) 2020: 6021602. Epub 20201204. https://doi.org/10.1155/2020/6021602

  34. Fling SP, Arp B, Pious D. Hla-Dma and -Dmb genes are both required for Mhc Class Ii/peptide complex formation in antigen-presenting cells. Nature. 1994;368(6471):554–8. https://doi.org/10.1038/368554a0.

    Article  CAS  PubMed  Google Scholar 

  35. Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin. 2020;13(1):17–33. https://doi.org/10.1016/j.path.2019.11.002.

    Article  PubMed  Google Scholar 

  36. Chen H, Lin R, Lin W, Chen Q, Ye D, Li J, et al. An immune gene signature to predict prognosis and immunotherapeutic response in lung adenocarcinoma. Sci Rep. 2022;12(1):8230. https://doi.org/10.1038/s41598-022-12301-6. (Epub 20220517).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alderson KL, Sondel PM. Clinical cancer therapy by Nk cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol. 2011;2011:379123. https://doi.org/10.1155/2011/379123. (Epub 20110524).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6. https://doi.org/10.1038/74704.

    Article  CAS  PubMed  Google Scholar 

  39. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6(9):714–27. https://doi.org/10.1038/nrc1913.

    Article  CAS  PubMed  Google Scholar 

  40. Seidel UJ, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol. 2013;4:76. https://doi.org/10.3389/fimmu.2013.00076. (Epub 20130327).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. Nk cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015;6:368. https://doi.org/10.3389/fimmu.2015.00368. (Epub 20150727).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fasano M, Della Corte CM, Di Liello R, Barra G, Sparano F, Viscardi G, et al. Induction of natural killer antibody-dependent cell cytotoxicity and of clinical activity of cetuximab plus avelumab in non-small cell lung cancer. ESMO Open. 2020;5(5):e000753. https://doi.org/10.1136/esmoopen-2020-000753.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Della Corte CM, Fasano M, Ciaramella V, Cimmino F, Cardnell R, Gay CM, et al. Anti-tumor activity of cetuximab plus avelumab in non-small cell lung cancer patients involves innate immunity activation: findings from the cave-lung trial. J Exp Clin Cancer Res. 2022;41(1):109. https://doi.org/10.1186/s13046-022-02332-2. (Epub 20220326).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dong Y, Yi L, Song Q, Yao Y. A pyroptosis-related gene model and its correlation with the microenvironment of lung adenocarcinoma: a bioinformatics analysis and experimental verification. Front Genet. 2022;13:997319. https://doi.org/10.3389/fgene.2022.997319. (Epub 20221109).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang X, Zhao C, Huang D, Liu Z, Liu M, Lin F, et al. A novel m6a-related genes signature can impact the immune status and predict the prognosis and drug sensitivity of lung adenocarcinoma. Front Immunol. 2022;13:923533. https://doi.org/10.3389/fimmu.2022.923533. (Epub 20220704).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen H, Wang Y, Shao C, Guo K, Liu G, Wang Z, et al. Molecular subgroup establishment and signature creation of Lncrnas associated with acetylation in lung adenocarcinoma. Aging (Albany NY). 2024;16(2):1276–97. https://doi.org/10.18632/aging.205407. (Epub 20240117).

    Article  PubMed  Google Scholar 

  47. Yu S, Tang L, Zhang Q, Li W, Yao S, Cai Y, et al. A Cuproptosis-related Lncrna signature for predicting prognosis and immunotherapy response of lung adenocarcinoma. Hereditas. 2023;160(1):31. https://doi.org/10.1186/s41065-023-00293-w. (Epub 20230724).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang H, Shi Y, Yi Q, Wang C, Xia Q, Zhang Y, et al. A novel defined cuproptosis-related gene signature for predicting the prognosis of lung adenocarcinoma. Front Genet. 2022;13:975185. https://doi.org/10.3389/fgene.2022.975185. (Epub 20220815).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng W, Wang J, Yang J, Chen Z, Cui Y, Li Q, et al. Identification of immune activation-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. Front Immunol. 2023;14:1217590. https://doi.org/10.3389/fimmu.2023.1217590. (Epub 20230707).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu Y, Du B, Lin M, Ji X, Lv C, Lai J. The identification of genes associated t-cell exhaustion and construction of prognostic signature to predict immunotherapy response in lung adenocarcinoma. Sci Rep. 2023;13(1):13415. https://doi.org/10.1038/s41598-023-40662-z. (Epub 20230817).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu X, Liu X, Qiu X, Niu Z, Dong W, Song Y. Prognostic roles of a novel basement membranes-related gene signature in lung adenocarcinoma. Front Genet. 2023;14:1100560. https://doi.org/10.3389/fgene.2023.1100560. (Epub 20230209).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang W, Li Z, Wang W, Wu J, Li J, Huang X, et al. Vasculogenic mimicry score identifies the prognosis and immune landscape of lung adenocarcinoma. Front Genet. 2023;14:1206141. https://doi.org/10.3389/fgene.2023.1206141. (Epub 20230607).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang W, Li H, Zhong L, Zhu T, Chang Z, Ou W, et al. Development of a copper metabolism-related gene signature in lung adenocarcinoma. Front Immunol. 2022;13:1040668. https://doi.org/10.3389/fimmu.2022.1040668. (Epub 20221129).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li H, Sha X, Wang W, Huang Z, Zhang P, Liu L, et al. Identification of lysosomal genes associated with prognosis in lung adenocarcinoma. Transl Lung Cancer Res. 2023;12(7):1477–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai J, Fu Y. Identification of necroptosis-related gene signature and characterization of tumour microenvironment infiltration in non-small-cell lung cancer. J Cell Mol Med. 2022;26(17):4698–709. https://doi.org/10.1111/jcmm.17494. (Epub 20220724).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang G, Zhang J, Gong L, Wang X, Zhang B, Liu D. Characterization of the fatty acid metabolism-related genes in lung adenocarcinoma to guide clinical therapy. BMC Pulm Med. 2022;22(1):486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chang W, Li H, Wu C, Zhong L, Zhu T, Chang Z, et al. Identification of an amino acid metabolism-related gene signature for predicting prognosis in lung adenocarcinoma. Genes (Basel). 2022. https://doi.org/10.3390/genes13122295. (Epub 20221206).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jiang Z, Luo Y, Zhang L, Li H, Pan C, Yang H, et al. A novel risk score model of lactate metabolism for predicting over survival and immune signature in lung adenocarcinoma. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14153727.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thanks all the online databases.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

FC Lai, FQ Yu conceived, designed and supervised the study. LY Zhang and X Zhang collected, analyzed the data and wrote the manuscript. MH Guan and JS Zeng conducted data analysis and revised the manuscript. All authors read and approved the final manuscript and consent for publication.

Corresponding authors

Correspondence to Fengqiang Yu or Fancai Lai.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the First Affiliated Hospital of Fujian Medical University, and this article does not contain any studies with human participants or animals.

Consent for publication

The content of this manuscript has not been previously published and is not under consideration for publication elsewhere. All authors consent for publication in this journal.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3060 KB)

Supplementary file2 (XLSX 1237 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, X., Guan, M. et al. Identification of a novel ADCC-related gene signature for predicting the prognosis and therapy response in lung adenocarcinoma. Inflamm. Res. (2024). https://doi.org/10.1007/s00011-024-01871-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00011-024-01871-y

Keywords

Navigation