Skip to main content

Advertisement

Log in

The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vincent K, Pichler M, Lee GW, Ling H. MicroRNAs, genomic instability and cancer. Int J Mol Sci. 2014;15(8):14475–91.

    Article  CAS  Google Scholar 

  2. Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci. 2019;44(1):33–52.

    Article  CAS  Google Scholar 

  3. Zhao Y, Teng H, Yao F, Yap S, Sun Y, Ma L. Challenges and strategies in ascribing functions to long noncoding RNAs. Cancers (Basel). 2020;12(6):1458.

    Article  CAS  Google Scholar 

  4. Friedrich M, Wiedemann K, Reiche K, Puppel SH, Pfeifer G, Zipfel I, et al. The role of lncRNAs TAPIR-1 and -2 as diagnostic markers and potential therapeutic targets in prostate cancer. Cancers (Basel). 2020;12(5):1122.

    Article  CAS  Google Scholar 

  5. Pan W, Li W, Zhao J, Huang Z, Zhao J, Chen S, et al. lncRNA-PDPK2P promotes hepatocellular carcinoma progression through the PDK1/AKT/Caspase 3 pathway. Mol Oncol. 2019;13(10):2246–58.

    Article  CAS  Google Scholar 

  6. Li P, Ruan X, Yang L, Kiesewetter K, Zhao Y, Luo H, et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab. 2015;21(3):455–67.

    Article  CAS  Google Scholar 

  7. Tan SH, Leong WZ, Ngoc PCT, Tan TK, Bertulfo FC, Lim MC, et al. The enhancer RNA ARIEL activates the oncogenic transcriptional program in T-cell acute lymphoblastic leukemia. Blood. 2019;134(3):239–51.

    Article  CAS  Google Scholar 

  8. Singer RA, Arnes L, Cui Y, Wang J, Gao Y, Guney MA, et al. The long noncoding RNA paupar modulates PAX6 regulatory activities to promote alpha cell development and function. Cell Metab. 2019;30(6):1091-106.e8.

    Article  CAS  Google Scholar 

  9. Chen Y, Li X, Li B, Wang H, Li M, Huang S, et al. Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Mol Ther. 2019;27(1):29–45.

    Article  CAS  Google Scholar 

  10. Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther. 2021;6(1):400.

    Article  CAS  Google Scholar 

  11. Chen L, Zhang T, Zhang S, Huang J, Zhang G, Xie K, et al. Identification of long non-coding RNA-associated competing endogenous RNA network in the differentiation of chicken preadipocytes. Genes (Basel). 2019;10(10):795.

    Article  CAS  Google Scholar 

  12. Meng K, Jiao J, Zhu RR, Wang BY, Mao XB, Zhong YC, et al. The long noncoding RNA hotair regulates oxidative stress and cardiac myocyte apoptosis during ischemia-reperfusion injury. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/1645249.

    Article  Google Scholar 

  13. Kang M, Tang B, Li J, Zhou Z, Liu K, Wang R, et al. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol Cancer. 2020;19(1):143.

    Article  CAS  Google Scholar 

  14. Zhang XW, Li QH, Xu ZD, Dou JJ. STAT1-induced regulation of lncRNA ZFPM2-AS1 predicts poor prognosis and contributes to hepatocellular carcinoma progression via the miR-653/GOLM1 axis. Cell Death Dis. 2021;12(1):31.

    Article  CAS  Google Scholar 

  15. Lu Z, Guo JK, Wei Y, Dou DR, Zarnegar B, Ma Q, et al. Structural modularity of the XIST ribonucleoprotein complex. Nat Commun. 2020;11(1):6163.

    Article  CAS  Google Scholar 

  16. Yuan L, Xu ZY, Ruan SM, Mo S, Qin JJ, Cheng XD. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol Cancer. 2020;19(1):96.

    Article  CAS  Google Scholar 

  17. Hou G, Harley ITW, Lu X, Zhou T, Xu N, Yao C, et al. SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nat Commun. 2021;12(1):135.

    Article  CAS  Google Scholar 

  18. Geng W, Lv Z, Fan J, Xu J, Mao K, Yin Z, et al. Identification of the prognostic significance of somatic mutation-derived LncRNA signatures of genomic instability in lung adenocarcinoma. Front Cell Dev Biol. 2021;9:736.

    Article  Google Scholar 

  19. Ma B, Li Y, Ren Y. Identification of a 6-lncRNA prognostic signature based on microarray re-annotation in gastric cancer. Cancer Med. 2020;9(1):335–49.

    Article  CAS  Google Scholar 

  20. Han M, Wang S, Fritah S, Wang X, Zhou W, Yang N, et al. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling. Brain. 2020;143(2):512–30.

    Article  Google Scholar 

  21. Yang T, Shu X, Zhang HW, Sun LX, Yu L, Liu J, et al. Enolase 1 regulates stem cell-like properties in gastric cancer cells by stimulating glycolysis. Cell Death Dis. 2020;11(10):870.

    Article  CAS  Google Scholar 

  22. Gong R, Jiang Y. Non-coding RNAs in pancreatic ductal adenocarcinoma. Front Oncol. 2020;10:309.

    Article  Google Scholar 

  23. Wu B, Wang K, Fei J, Bao Y, Wang X, Song Z, et al. Novel three-lncRNA signature predicts survival in patients with pancreatic cancer. Oncol Rep. 2018;40(6):3427–37.

    CAS  Google Scholar 

  24. Du J, Li Z, Wang X, Li J, Liu D, Wang X, et al. Long noncoding RNA TCONS-00106987 promotes atrial electrical remodelling during atrial fibrillation by sponging miR-26 to regulate KCNJ2. J Cell Mol Med. 2020;24(21):12777–88.

    Article  CAS  Google Scholar 

  25. Asgharzadeh A, Alizadeh S, Keramati MR, Soleimani M, Atashi A, Edalati M, et al. Upregulation of miR-210 promotes differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Bosn J Basic Med Sci. 2018;18(4):328–35.

    Article  CAS  Google Scholar 

  26. Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: the master hypoxamir. Microcirculation. 2012;19(3):215–23.

    Article  CAS  Google Scholar 

  27. Huang X, Le QT, Giaccia AJ. MiR-210–micromanager of the hypoxia pathway. Trends Mol Med. 2010;16(5):230–7.

    Article  CAS  Google Scholar 

  28. Voellenkle C, Garcia-Manteiga JM, Pedrotti S, Perfetti A, De Toma I, Da Silva D, et al. Implication of long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci Rep. 2016;6:1–13.

    Article  Google Scholar 

  29. Wu J, Ren X, Wang N, Zhou R, Chen M, Cai Y, et al. A mutation-related long noncoding RNA signature of genome instability predicts immune infiltration and hepatocellular carcinoma prognosis. Front Genet. 2021;12:779554.

    Article  CAS  Google Scholar 

  30. Xia X, Zhang H, Xia P, Zhu Y, Liu J, Xu K, et al. Identification of glycolysis-related lncRNAs and the novel lncRNA WAC-AS1 promotes glycolysis and tumor progression in hepatocellular carcinoma. Front Oncol. 2021;11:733595.

    Article  Google Scholar 

  31. Wang Y, Li W, Chen X, Li Y, Wen P, Xu F. MIR210HG predicts poor prognosis and functions as an oncogenic lncRNA in hepatocellular carcinoma. Biomed Pharmacother. 2019;11:11297–301.

    Google Scholar 

  32. Duan Y, Wu H, Hao X, Li F, Liu J, Zhu C, et al. Knockdown of long non-coding MIR210HG inhibits cell proliferation, migration, and invasion in hepatoblastoma via the microRNA-608-FOXO6 axis. J Int Med Res. 2021. https://doi.org/10.1177/03000605211054695.

    Article  Google Scholar 

  33. Min W, Dai D, Wang J, Zhang D, Zhang Y, Han G, et al. Long noncoding RNA miR210HG as a potential biomarker for the diagnosis of glioma. PLoS ONE. 2016;11(9):e0160451.

    Article  Google Scholar 

  34. Tao C, Luo H, Chen L, Li J, Zhu X, Huang K. Identification of an epithelial-mesenchymal transition related long non-coding RNA (LncRNA) signature in Glioma. Bioengineered. 2021;12(1):4016–31.

    Article  CAS  Google Scholar 

  35. Witusik-Perkowska M, Jaskólski DJ, Liberski PP, Szemraj J. If artificial in vitro microenvironment can influence tumor drug resistance network via modulation of lncRNA expression?-Comparative analysis of glioblastoma-derived cell culture models and initial tumors in vivo. Cell Mol Neurobiol. 2022;42(4):1005–20.

    Article  CAS  Google Scholar 

  36. Ho KH, Shih CM, Liu AJ, Chen KC. Hypoxia-inducible lncRNA MIR210HG interacting with OCT1 is involved in glioblastoma multiforme malignancy. Cancer Sci. 2022;113(2):540–52.

    Article  CAS  Google Scholar 

  37. Bu L, Zhang L, Tian M, Zheng Z, Tang H, Yang Q. LncRNA MIR210HG facilitates non-small cell lung cancer progression through directly regulation of miR-874/STAT3 axis. Dose Response. 2020. https://doi.org/10.1177/1559325820918052.

    Article  Google Scholar 

  38. Kang X, Kong F, Huang K, Li L, Li Z, Wang X, et al. LncRNA MIR210HG promotes proliferation and invasion of non-small cell lung cancer by upregulating methylation of CACNA2D2 promoter via binding to DNMT1. Onco Targets Ther. 2019;12:3779–90.

    Article  CAS  Google Scholar 

  39. Li XL, Zhang L, Hou B, Piao SF, Tang Q, Dong M, et al. Expression of lncRNA MIR210HG in preeclampsia placental tissue and its functional analysis. Zhonghua Fu Chan Ke Za Zhi. 2021;56(6):425–33.

    CAS  Google Scholar 

  40. Lei D, Fang C, Deng N, Yao B, Fan C. Long noncoding RNA expression profiling identifies MIR210HG as a novel molecule in severe preeclampsia. Life Sci. 2021;270:119121.

    Article  CAS  Google Scholar 

  41. Yu T, Li G, Wang C, Gong G, Wang L, Li C, et al. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis. RNA Biol. 2021;18(12):2513–30.

    Article  CAS  Google Scholar 

  42. Li D, Qian X, Xu P, Wang X, Li Z, Qian J, et al. Identification of lncRNAs and their functional network associated with chemoresistance in SW1990/GZ pancreatic cancer cells by RNA sequencing. DNA Cell Biol. 2018;37(10):839–49.

    Article  CAS  Google Scholar 

  43. Li XY, Zhou LY, Luo H, Zhu Q, Zuo L, Liu GY, et al. The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226–3p to regulate mucin-1c expression in invasive breast cancer. Aging (Albany NY). 2019;11(15):5646–65.

    Article  CAS  Google Scholar 

  44. Du Y, Wei N, Ma R, Jiang SH, Song D. Long noncoding RNA MIR210HG promotes the warburg effect and tumor growth by enhancing HIF-1α translation in triple-negative breast cancer. Front Oncol. 2020;10:580176.

    Article  Google Scholar 

  45. Cheng L, Han T, Zhang Z, Yi P, Zhang C, Zhang S, et al. Identification and validation of six autophagy-related long non-coding RNAs as prognostic signature in colorectal cancer. Int J Med Sci. 2021;18(1):88–98.

    Article  CAS  Google Scholar 

  46. Ho-Xuan H, Lehmann G, Glazar P, Gypas F, Eichner N, Heizler K, et al. Gene expression signatures of a preclinical mouse model during colorectal cancer progression under low-dose metronomic chemotherapy. Cancers (Basel). 2020;13(1):49.

    Article  Google Scholar 

  47. Ruan Z, Xu Z, Li Z, Lv Y. Integral analyses of survival-related long non-coding RNA MIR210HG and its prognostic role in colon cancer. Oncol Lett. 2019;18(2):1107–16.

    CAS  Google Scholar 

  48. He Z, Dang J, Song A, Cui X, Ma Z, Zhang Z. Identification of LINC01234 and MIR210HG as novel prognostic signature for colorectal adenocarcinoma. J Cell Physiol. 2019;234(5):6769–77.

    Article  CAS  Google Scholar 

  49. Chen Q, Hu L, Huang D, Chen K, Qiu X, Qiu B. Six-lncRNA immune prognostic signature for cervical cancer. Front Genet. 2020;11:533628.

    Article  CAS  Google Scholar 

  50. Wang AH, Jin CH, Cui GY, Li HY, Wang Y, Yu JJ, et al. MIR210HG promotes cell proliferation and invasion by regulating miR-503–5p/TRAF4 axis in cervical cancer. Aging (Albany NY). 2020;12(4):3205–17.

    Article  CAS  Google Scholar 

  51. Liu P, Huang H, Qi X, Bian C, Cheng M, Liu L, et al. Hypoxia-induced LncRNA-MIR210HG promotes cancer progression by inhibiting HIF-1α degradation in ovarian cancer. Front Oncol. 2021;11:701488.

    Article  Google Scholar 

  52. Ma J, Kong FF, Yang D, Yang H, Wang C, Cong R, et al. lncRNA MIR210HG promotes the progression of endometrial cancer by sponging miR-337–3p/137 via the HMGA2-TGF-β/Wnt pathway. Mol Ther Nucleic Acids. 2021;2:4905–22.

    Google Scholar 

  53. Li ZY, Xie Y, Deng M, Zhu L, Wu X, Li G, et al. c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer. Cancer Lett. 2022;52:6322–34.

    Google Scholar 

  54. Li J, Wu QM, Wang XQ, Zhang CQ. Long noncoding RNA miR210HG sponges miR-503 to facilitate osteosarcoma cell invasion and metastasis. DNA Cell Biol. 2017;36(12):1117–25.

    Article  CAS  Google Scholar 

  55. Ata-Abadi NS, Mowla SJ, Aboutalebi F, Dormiani K, Kiani-Esfahani A, Tavalaee M, et al. Hypoxia-related long noncoding RNAs are associated with varicocele-related male infertility. PLoS ONE. 2020;15(4):e0232357.

    Article  CAS  Google Scholar 

  56. Ma L, Shi W, Ma X, Zou M, Chen W, Li W, et al. Comprehensive analysis of differential immunocyte infiltration and the potential ceRNA networks during epicardial adipose tissue development in congenital heart disease. J Transl Med. 2020;18(1):111.

    Article  CAS  Google Scholar 

  57. Lin J, Zhang X, Xue C, Zhang H, Shashaty MG, Gosai SJ, et al. The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury. Am J Physiol Renal Physiol. 2015;309(11):F901–13.

    Article  CAS  Google Scholar 

  58. Chen H, Chen L. An integrated analysis of the competing endogenous RNA network and co-expression network revealed seven hub long non-coding RNAs in osteoarthritis. Bone Joint Res. 2020;9(3):90–8.

    Article  Google Scholar 

  59. Neves SP, de Carvalho NC, da Silva MM, Rodrigues A, Bomfim LM, Dias RB, et al. Ruthenium complexes containing heterocyclic thioamidates trigger caspase-mediated apoptosis through MAPK signaling in human hepatocellular carcinoma cells. Front Oncol. 2019;95:62.

    Google Scholar 

  60. Fages A, Duarte-Salles T, Stepien M, Ferrari P, Fedirko V, Pontoizeau C, et al. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Med. 2015;13:242.

    Article  Google Scholar 

  61. Ma S, Sun J, Guo Y, Zhang P, Liu Y, Zheng D, et al. Combination of AAV-TRAIL with miR-221-Zip therapeutic strategy overcomes the resistance to TRAIL induced apoptosis in liver cancer. Theranostics. 2017;7(13):3228–42.

    Article  CAS  Google Scholar 

  62. Chang Y, Jeong SW, Young Jang J, Jae KY. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma. Int J Mol Sci. 2020;21(21):8165.

    Article  CAS  Google Scholar 

  63. Badroon NA, Abdul Majid N, Alshawsh MA. Antiproliferative and apoptotic effects of cardamonin against hepatocellular carcinoma HepG2 cells. Nutrients. 2020;12(6):1757.

    Article  CAS  Google Scholar 

  64. Liu J, Qu L, Wan C, Xiao M, Ni W, Jiang F, et al. A novel β2-AR/YB-1/β-catenin axis mediates chronic stress-associated metastasis in hepatocellular carcinoma. Oncogenesis. 2020;9(9):84.

    Article  Google Scholar 

  65. Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, et al. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med. 2011;9:1–14.

    Article  Google Scholar 

  66. Saini A, Wallace A, Alzubaidi S, Knuttinen MG, Naidu S, Sheth R, et al. History and evolution of yttrium-90 radioembolization for hepatocellular carcinoma. J Clin Med. 2019;8(1):55.

    Article  CAS  Google Scholar 

  67. Kunadirek P, Chuaypen N, Jenjaroenpun P, Wongsurawat T, Pinjaroen N, Sirichindakul P, et al. Cell-free DNA analysis by whole-exome sequencing for hepatocellular carcinoma: a pilot study in Thailand. Cancers (Basel). 2021;13(9):2229.

    Article  CAS  Google Scholar 

  68. Deng Y, Li Y, Fang Q, Luo H, Zhu G. microRNA-744 is downregulated in glioblastoma and inhibits the aggressive behaviors by directly targeting NOB1. Am J Cancer Res. 2018;8(11):2238–53.

    CAS  Google Scholar 

  69. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  Google Scholar 

  70. Bardella C, Al-Dalahmah O, Krell D, Brazauskas P, Al-Qahtani K, Tomkova M, et al. Expression of Idh 1(R132H) in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell. 2016;30(4):578–94.

    Article  CAS  Google Scholar 

  71. Chien CH, Hsueh WT, Chuang JY, Chang KY. Dissecting the mechanism of temozolomide resistance and its association with the regulatory roles of intracellular reactive oxygen species in glioblastoma. J Biomed Sci. 2021;28(1):18.

    Article  CAS  Google Scholar 

  72. Bulin AL, Broekgaarden M, Chaput F, Baisamy V, Garrevoet J, Busser B, et al. Radiation dose-enhancement is a potent radiotherapeutic effect of rare-earth composite nanoscintillators in preclinical models of glioblastoma. Adv Sci (Weinh). 2020;7(20):2001675.

    Article  CAS  Google Scholar 

  73. Xu BJ, An QA, Srinivasa Gowda S, Yan W, Pierce LA, Abel TW, et al. Identification of blood protein biomarkers that aid in the clinical assessment of patients with malignant glioma. Int J Oncol. 2012;40(6):1995–2003.

    CAS  Google Scholar 

  74. Seznec J, Naumann U. Microarray analysis in a cell death resistant glioma cell line to identify signaling pathways and novel genes controlling resistance and malignancy. Cancers (Basel). 2011;3(3):2827–43.

    Article  CAS  Google Scholar 

  75. Lozada-Delgado EL, Grafals-Ruiz N, Miranda-Román MA, Santana-Rivera Y, Valiyeva F, Rivera-Díaz M, et al. Targeting microRNA-143 leads to inhibition of glioblastoma tumor progression. Cancers (Basel). 2018;10(10):382.

    Article  CAS  Google Scholar 

  76. Doan P, Musa A, Murugesan A, Sipilä V, Candeias NR, Emmert-Streib F, et al. Glioblastoma multiforme stem cell cycle arrest by alkylaminophenol through the modulation of EGFR and CSC signaling pathways. Cells. 2020;9(3):681.

    Article  CAS  Google Scholar 

  77. Marx S, Xiao Y, Baschin M, Splittstöhser M, Altmann R, Moritz E, et al. The role of platelets in cancer pathophysiology: focus on malignant glioma. Cancers (Basel). 2019;11(4):569.

    Article  CAS  Google Scholar 

  78. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  Google Scholar 

  79. Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med. 2015;3(9):121.

    Google Scholar 

  80. Wang P, Wan W, Xiong S, Wang J, Zou D, Lan C, et al. HIF1α regulates glioma chemosensitivity through the transformation between differentiation and dedifferentiation in various oxygen levels. Sci Rep. 2017;7(1):7965.

    Article  Google Scholar 

  81. Wang XW, Guo QQ, Wei Y, Ren KM, Zheng FS, Tang J, et al. Construction of a competing endogenous RNA network using differentially expressed lncRNAs, miRNAs and mRNAs in non-small cell lung cancer. Oncol Rep. 2019;42(6):2402–15.

    CAS  Google Scholar 

  82. Wu SR, Lin CH, Shih HP, Ko CJ, Lin HY, Lan SW, et al. HAI-2 as a novel inhibitor of plasmin represses lung cancer cell invasion and metastasis. Br J Cancer. 2019;120(5):499–511.

    Article  CAS  Google Scholar 

  83. Torre LA, Siegel RL, Jemal A. Lung Cancer Statistics. In: Ahmad A, Gadgeel S, editors. Lung cancer and personalized medicine. Advances in experimental medicine and biology, vol. 893. Cham: Springer; 2016.

    Google Scholar 

  84. Skřičková J, Kadlec B, Venclíček O, Merta Z. Lung cancer. Cas Lek Cesk. 2018;157(5):226–36.

    Google Scholar 

  85. Wu J, Chen R, Shen H, Yan T, Qian Y, Zhang Y, et al. Transcriptome analysis of Ivosidenib-mediated inhibitory functions on non-small cell lung cancer. Front Oncol. 2021;11:626605.

    Article  Google Scholar 

  86. Mei D, Zhao L, Chen B, Zhang X, Wang X, Yu Z, et al. α-Conotoxin ImI-modified polymeric micelles as potential nanocarriers for targeted docetaxel delivery to α7-nAChR overexpressed non-small cell lung cancer. Drug Deliv. 2018;25(1):493–503.

    Article  CAS  Google Scholar 

  87. Szalontai K, Gémes N, Furák J, Varga T, Neuperger P, Balog J, et al. Chronic obstructive pulmonary disease: epidemiology, biomarkers, and paving the way to lung cancer. J Clin Med. 2021;10(13):2889.

    Article  CAS  Google Scholar 

  88. Gomes M, Teixeira AL, Coelho A, Araújo A, Medeiros R. The role of inflammation in lung cancer. In: Aggarwal B, Sung B, Gupta S, editors. Inflammation and cancer. Advances in experimental medicine and biology, vol. 816. Basel: Springer; 2014.

    Google Scholar 

  89. Han L, Chen W, Xia Y, Song Y, Zhao Z, Cheng H, et al. MiR-101 inhibits the proliferation and metastasis of lung cancer by targeting zinc finger E-box binding homeobox 1. Am J Transl Res. 2018;10(4):1172–83.

    CAS  Google Scholar 

  90. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367–80.

    Article  CAS  Google Scholar 

  91. Osarogiagbon RU, Cappuzzo F, Ciuleanu T, Leon L, Klughammer B. Erlotinib therapy after initial platinum doublet therapy in patients with EGFR wild type non-small cell lung cancer: results of a combined patient-level analysis of the NCIC CTG BR.21 and SATURN trials. Transl Lung Cancer Res. 2015;4(4):465–74.

    CAS  Google Scholar 

  92. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman J, Chirieac LR, et al. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15(4):504–35.

    Article  Google Scholar 

  93. Chang JS, Chen LT, Shan YS, Chu PY, Tsai CR, Tsai HJ. The incidence and survival of pancreatic cancer by histology, including rare subtypes: a nation-wide cancer registry-based study from Taiwan. Cancer Med. 2018;7(11):5775–88.

    Article  CAS  Google Scholar 

  94. Azmi AS, Li Y, Aboukameel A, Muqbil I, Philip PA, Mohammad RM. DNA-methylation-caused downregulation of miR-30 contributes to the high expression of XPO1 and the aggressive growth of tumors in pancreatic ductal adenocarcinoma. Cancers (Basel). 2019;11(8):1101.

    Article  CAS  Google Scholar 

  95. Yan Q, Hu D, Li M, Chen Y, Wu X, Ye Q, et al. The serum MicroRNA signatures for pancreatic cancer detection and operability evaluation. Front Bioeng Biotechnol. 2020;8:379.

    Article  Google Scholar 

  96. Liu P, Kong L, Jin H, Wu Y, Tan X, Song B. Differential secretome of pancreatic cancer cells in serum-containing conditioned medium reveals CCT8 as a new biomarker of pancreatic cancer invasion and metastasis. Cancer Cell Int. 2019;19:1–10.

    Article  Google Scholar 

  97. Birnbaum DJ, Bertucci F, Finetti P, Birnbaum D, Mamessier E. Head and body/tail pancreatic carcinomas are not the same tumors. Cancers (Basel). 2019;11(4):497.

    Article  CAS  Google Scholar 

  98. Neoptolemos JP, Palmer DH, Ghaneh P, Psarelli EE, Valle JW, Halloran CM, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389(10073):1011–24.

    Article  CAS  Google Scholar 

  99. Lambert A, Gavoille C, Conroy T. Current status on the place of FOLFIRINOX in metastatic pancreatic cancer and future directions. Therap Adv Gastroenterol. 2017;10(8):631–45.

    Article  CAS  Google Scholar 

  100. Mahmood J, Alexander AA, Samanta S, Kamlapurkar S, Singh P, Saeed A, et al. A combination of radiotherapy, hyperthermia, and immunotherapy inhibits pancreatic tumor growth and prolongs the survival of mice. Cancers (Basel). 2020;12(4):1015.

    Article  CAS  Google Scholar 

  101. Zhao C, Cai X, Wang Y, Wang D, Wang T, Gong H, et al. NAT1 promotes osteolytic metastasis in luminal breast cancer by regulating the bone metastatic niche via NF-κB/IL-1B signaling pathway. Am J Cancer Res. 2020;10(8):2464–79.

    CAS  Google Scholar 

  102. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  Google Scholar 

  103. Narbe U, Bendahl PO, Aaltonen K, Fernö M, Forsare C, Jørgensen CLT, et al. The distribution of circulating tumor cells is different in metastatic lobular compared to ductal carcinoma of the breast-long-term prognostic significance. Cells. 2020;9(7):1718.

    Article  CAS  Google Scholar 

  104. Wang F, Wang X, Li J, Lv P, Han M, Li L, et al. CircNOL10 suppresses breast cancer progression by sponging miR-767–5p to regulate SOCS2/JAK/STAT signaling. J Biomed Sci. 2021;28(1):4.

    Article  CAS  Google Scholar 

  105. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  106. Anderson BO, Shyyan R, Eniu A, Smith RA, Yip CH, Bese NS, et al. Breast cancer in limited-resource countries: an overview of the Breast Health Global Initiative 2005 guidelines. Breast J. 2006;12(Suppl 1):S3-15.

    Article  Google Scholar 

  107. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66.

    Article  Google Scholar 

  108. Marklund A, Lundberg FE, Eloranta S, Hedayati E, Pettersson K, Rodriguez-Wallberg KA. Reproductive outcomes after breast cancer in women with vs without fertility preservation. JAMA Oncol. 2021;7(1):86–91.

    Article  Google Scholar 

  109. Kim H, Kang KN, Shin YS, Byun Y, Han Y, Kwon W, et al. Biomarker panel for the diagnosis of pancreatic ductal adenocarcinoma. Cancers (Basel). 2020;12(6):1443.

    Article  CAS  Google Scholar 

  110. Yang T, Zhiheng H, Zhanhuai W, Qian X, Yue L, Xiaoxu G, et al. Increased RAB31 expression in cancer-associated fibroblasts promotes colon cancer progression through HGF-MET signaling. Front Oncol. 2020;10:1747.

    Article  Google Scholar 

  111. Harrison S, Benziger H. The molecular biology of colorectal carcinoma and its implications: a review. Surgeon. 2011;9(4):200–10.

    Article  Google Scholar 

  112. Dabiri Y, Kalman S, Gürth CM, Kim JY, Mayer V, Cheng X. The essential role of TAp73 in bortezomib-induced apoptosis in p53-deficient colorectal cancer cells. Sci Rep. 2017;7(1):5423.

    Article  Google Scholar 

  113. Tsai HL, Miao ZF, Chen YT, Huang CW, Yeh YS, Yang IP, et al. miR-148a inhibits early relapsed colorectal cancers and the secretion of VEGF by indirectly targeting HIF-1α under non-hypoxia/hypoxia conditions. J Cell Mol Med. 2019;23(5):3572–82.

    Article  CAS  Google Scholar 

  114. Ma G, Dai W, Zhang J, Li Q, Gu B, Song Y, et al. ELK1-mediated upregulation of lncRNA LBX2-AS1 facilitates cell proliferation and invasion via regulating miR-491-5p/S100A11 axis in colorectal cancer. Int J Mol Med. 2021;48(1):1–14.

    Article  Google Scholar 

  115. Yamashita K, Watanabe M. Clinical significance of tumor markers and an emerging perspective on colorectal cancer. Cancer Sci. 2009;100(2):195–9.

    Article  CAS  Google Scholar 

  116. Freedman AN, Slattery ML, Ballard-Barbash R, Willis G, Cann BJ, Pee D, et al. Colorectal cancer risk prediction tool for white men and women without known susceptibility. J Clin Oncol. 2009;27(5):686–93.

    Article  Google Scholar 

  117. Li F, Huang T, Tang Y, Li Q, Wang J, Cheng X, et al. Utidelone inhibits growth of colorectal cancer cells through ROS/JNK signaling pathway. Cell Death Dis. 2021;12(4):338.

    Article  CAS  Google Scholar 

  118. Fang M, Kan Y, Dong D, Yu T, Zhao N, Jiang W, et al. Multi-habitat based radiomics for the prediction of treatment response to concurrent chemotherapy and radiation therapy in locally advanced cervical cancer. Front Oncol. 2020;10:563.

    Article  Google Scholar 

  119. Markman M. Chemoradiation in the management of cervix cancer: current status and future directions. Oncology. 2013;84(4):246–50.

    Article  CAS  Google Scholar 

  120. Leo PJ, Madeleine MM, Wang S, Schwartz SM, Newell F, Pettersson-Kymmer U, et al. Defining the genetic susceptibility to cervical neoplasia-A genome-wide association study. PLoS Genet. 2017;13(8):e1006866.

    Article  Google Scholar 

  121. Schiffman M, Glass AG, Wentzensen N, Rush BB, Castle PE, Scott DR, et al. A long-term prospective study of type-specific human papillomavirus infection and risk of cervical neoplasia among 20,000 women in the Portland Kaiser Cohort Study. Cancer Epidemiol Biomarkers Prev. 2011;20(7):1398–409.

    Article  Google Scholar 

  122. Paul P, Winkler JL, Bartolini RM, Penny ME, Huong TT, le Nga T, et al. Screen-and-treat approach to cervical cancer prevention using visual inspection with acetic acid and cryotherapy: experiences, perceptions, and beliefs from demonstration projects in Peru, Uganda, and Vietnam. Oncologist. 2013;18(Suppl):6–12.

    Article  Google Scholar 

  123. Song J, Ye A, Jiang E, Yin X, Chen Z, Bai G, et al. Reconstruction and analysis of the aberrant lncRNA-miRNA–mRNA network based on competitive endogenous RNA in CESC. J Cell Biochem. 2018;119(8):6665–73.

    Article  CAS  Google Scholar 

  124. Dou X, Zhou Q, Wen M, Xu J, Zhu Y, Zhang S, et al. Long noncoding RNA FOXD2-AS1 promotes the malignancy of cervical cancer by sponging microRNA-760 and upregulating hepatoma-derived growth factor. Front Pharmacol. 2019;10:1700.

    Article  CAS  Google Scholar 

  125. Mieulet V, Garnier C, Kieffer Y, Guilbert T, Nemati F, Marangoni E, et al. Stiffness increases with myofibroblast content and collagen density in mesenchymal high grade serous ovarian cancer. Sci Rep. 2021;11(1):4219.

    Article  CAS  Google Scholar 

  126. Wojtowicz K, Sterzyńska K, Świerczewska M, Nowicki M, Zabel M, Januchowski R. Piperine targets different drug resistance mechanisms in human ovarian cancer cell lines leading to increased sensitivity to cytotoxic drugs. Int J Mol Sci. 2021;22(8):4243.

    Article  CAS  Google Scholar 

  127. Sehouli J, Grabowski JP. Surgery in recurrent ovarian cancer. Cancer. 2019;125(Suppl):244598–601.

    Google Scholar 

  128. Lee JM, Minasian L, Kohn EC. New strategies in ovarian cancer treatment. Cancer. 2019;125(Suppl 24):4623–9.

    Article  CAS  Google Scholar 

  129. Klapdor R, Wang S, Morgan M, Dörk T, Hacker U, Hillemanns P, et al. Characterization of a novel third-generation anti-CD24-CAR against ovarian cancer. Int J Mol Sci. 2019;20(3):660.

    Article  CAS  Google Scholar 

  130. O’Mara TA, Glubb DM, Amant F, Annibali D, Ashton K, Attia J, et al. Identification of nine new susceptibility loci for endometrial cancer. Nat Commun. 2018;9(1):3166.

    Article  Google Scholar 

  131. Xu Q, Ge Q, Zhou Y, Yang B, Yang Q, Jiang S, et al. MELK promotes Endometrial carcinoma progression via activating mTOR signaling pathway. EBioMedicine. 2020;51:102609.

    Article  Google Scholar 

  132. Huang KJ, Li YX, Sheu BC, Chang WC. Two-port access for laparoscopic surgery for endometrial cancer using conventional laparoscopic instruments. Sci Rep. 2021;11(1):615.

    Article  CAS  Google Scholar 

  133. Dizon DS, Blessing JA, McMeekin DS, Sharma SK, Disilvestro P, Alvarez RD. Phase II trial of ixabepilone as second-line treatment in advanced endometrial cancer: gynecologic oncology group trial 129-P. J Clin Oncol. 2009;27(19):3104–8.

    Article  CAS  Google Scholar 

  134. Liu K, Jiao XD, Hao JL, Qin BD, Wu Y, Chen W, et al. MTSS1 inhibits metastatic potential and induces G2/M phase cell cycle arrest in gastric cancer. Onco Targets Ther. 2019;12:5143–52.

    Article  CAS  Google Scholar 

  135. Wang GY, Ji B, Wang X, Gu JH. Anti-cancer effect of iNOS inhibitor and its correlation with angiogenesis in gastric cancer. World J Gastroenterol. 2005;11(25):3830–3.

    Article  CAS  Google Scholar 

  136. Gantuya B, El-Serag HB, Matsumoto T, Ajami NJ, Oyuntsetseg K, Azzaya D, et al. Gastric microbiota in Helicobacter pylori-negative and -positive gastritis among high incidence of gastric cancer area. Cancers (Basel). 2019;11(4):504.

    Article  CAS  Google Scholar 

  137. Tsurudome I, Miyahara R, Funasaka K, Furukawa K, Matsushita M, Yamamura T, et al. In vivo histological diagnosis for gastric cancer using endocytoscopy. World J Gastroenterol. 2017;23(37):6894–901.

    Article  Google Scholar 

  138. Lin Y, Ge X, Zhang X, Wu Z, Liu K, Lin F, et al. Protocadherin-8 promotes invasion and metastasis via laminin subunit γ2 in gastric cancer. Cancer Sci. 2018;109(3):732–40.

    Article  CAS  Google Scholar 

  139. Tao W, Li Y, Zhu M, Li C, Li P. LncRNA NORAD promotes proliferation and inhibits apoptosis of gastric cancer by regulating miR-214/Akt/mTOR axis. Onco Targets Ther. 2019;12:8841–51.

    Article  CAS  Google Scholar 

  140. Cai C, Dang W, Liu S, Huang L, Li Y, Li G, et al. Anthrax toxin receptor 1/tumor endothelial marker 8 promotes gastric cancer progression through activation of the PI3K/AKT/mTOR signaling pathway. Cancer Sci. 2020;111(4):1132–45.

    Article  CAS  Google Scholar 

  141. Nieminen AA, Kontto J, Puolakkainen P, Virtamo J, Kokkola A. Comparison of operative link for gastritis assessment, operative link on gastric intestinal metaplasia assessment, and TAIM stagings among men with atrophic gastritis. World J Gastroenterol. 2020;26(24):3447–57.

    Article  Google Scholar 

  142. Yıldız Y, Sokmensuer C, Yalcin S. Evaluation of c-Met, HGF, and HER-2 expressions in gastric carcinoma and their association with other clinicopathological factors. Onco Targets Ther. 2016;9:5809–17.

    Article  Google Scholar 

  143. Gatta G, Capocaccia R, Stiller C, Kaatsch P, Berrino F, Terenziani M. Childhood cancer survival trends in Europe: a EUROCARE Working Group study. J Clin Oncol. 2005;23(16):3742–51.

    Article  Google Scholar 

  144. Garimella R, Tadikonda P, Tawfik O, Gunewardena S, Rowe P, Van Veldhuizen P. Vitamin D impacts the expression of Runx2 target genes and modulates inflammation, oxidative stress and membrane vesicle biogenesis gene networks in 143B osteosarcoma cells. Int J Mol Sci. 2017;18(3):642.

    Article  Google Scholar 

  145. Liao YX, Yu HY, Lv JY, Cai YR, Liu F, He ZM, et al. Targeting autophagy is a promising therapeutic strategy to overcome chemoresistance and reduce metastasis in osteosarcoma. Int J Oncol. 2019;55(6):1213–22.

    CAS  Google Scholar 

  146. Biermann JS, Chow W, Reed DR, Lucas D, Adkins DR, Agulnik M, et al. NCCN guidelines insights: bone cancer, version 2.2017. J Natl Compr Canc Netw. 2017;15(2):155–67.

    Article  Google Scholar 

  147. Ross CL, Siriwardane M, Almeida-Porada G, Porada CD, Brink P, Christ GJ, et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 2015;15(1):96–108.

    Article  Google Scholar 

  148. Chang PS, Yen CH, Huang YY, Chiu CJ, Lin PT. Associations between coenzyme Q10 status, oxidative stress, and muscle strength and endurance in patients with osteoarthritis. Antioxidants (Basel). 2020;9(12):1275.

    Article  CAS  Google Scholar 

  149. Chen CH, Kuo SM, Tien YC, Shen PC, Kuo YW, Huang HH. Steady augmentation of anti-osteoarthritic actions of rapamycin by liposome-encapsulation in collaboration with low-intensity pulsed ultrasound. Int J Nanomedicine. 2020;15:3771–90.

    Article  CAS  Google Scholar 

  150. Bianco D, Todorov A, Čengić T, Pagenstert G, Schären S, Netzer C, et al. Alterations of subchondral bone progenitor cells in human knee and hip osteoarthritis lead to a bone sclerosis phenotype. Int J Mol Sci. 2018;19(2):475.

    Article  Google Scholar 

  151. Liu P, Gu L, Ren L, Chen J, Li T, Wang X, et al. Intra-articular injection of etoricoxib-loaded PLGA-PEG-PLGA triblock copolymeric nanoparticles attenuates osteoarthritis progression. Am J Transl Res. 2019;11(11):6775–89.

    CAS  Google Scholar 

  152. Wu Y, Wang Z, Lin Z, Fu X, Zhan J, Yu K. Salvianolic acid A has anti-osteoarthritis effect in vitro and in vivo. Front Pharmacol. 2020;11:682.

    Article  CAS  Google Scholar 

  153. Huang J, Zhao L, Fan Y, Liao L, Ma PX, Xiao G, et al. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nat Commun. 2019;10(1):2876.

    Article  Google Scholar 

  154. Sluzalska KD, Liebisch G, Wilhelm J, Ishaque B, Hackstein H, Schmitz G, et al. Growth factors regulate phospholipid biosynthesis in human fibroblast-like synoviocytes obtained from osteoarthritic knees. Sci Rep. 2017;7(1):13469.

    Article  Google Scholar 

  155. Goyal A, Kuchana M, Ayyagari KPR. Machine learning predicts live-birth occurrence before in-vitro fertilization treatment. Sci Rep. 2020;10(1):20925.

    Article  CAS  Google Scholar 

  156. Bai X, Tang Y, Li Q, Chen Y, Liu D, Liu G, et al. Network pharmacology integrated molecular docking reveals the bioactive components and potential targets of Morinda officinalis-Lycium barbarum coupled-herbs against oligoasthenozoospermia. Sci Rep. 2021;11(1):2220.

    Article  CAS  Google Scholar 

  157. Costa-Borges N, Spath K, Miguel-Escalada I, Mestres E, Balmaseda R, Serafín A, et al. Maternal spindle transfer overcomes embryo developmental arrest caused by ooplasmic defects in mice. Elife. 2020;9:e48591.

    Article  CAS  Google Scholar 

  158. Martins AD, Panner Selvam MK, Agarwal A, Alves MG, Baskaran S. Alterations in seminal plasma proteomic profile in men with primary and secondary infertility. Sci Rep. 2020;10(1):7539.

    Article  CAS  Google Scholar 

  159. Huang C, Zhang W, Sun A, Zhang X, Guo J, Ji R, et al. Methane ameliorates lipopolysaccharide-induced acute orchitis by anti-inflammatory, antioxidative, and antiapoptotic effects via regulation of the PK2/PKR1 pathway. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/7075836.

    Article  Google Scholar 

  160. Ntsinjana HN, Hughes ML, Taylor AM. The role of cardiovascular magnetic resonance in pediatric congenital heart disease. J Cardiovasc Magn Reson. 2011;13(1):51.

    Article  Google Scholar 

  161. Gilboa SM, Devine OJ, Kucik JE, Oster ME, Riehle-Colarusso T, Nembhard WN, et al. Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation. 2016;134(2):101–9.

    Article  Google Scholar 

  162. He D, Liu ZP, Chen L. Identification of dysfunctional modules and disease genes in congenital heart disease by a network-based approach. BMC Genomics. 2011;12:592.

    Article  CAS  Google Scholar 

  163. Fedchenko M, Mandalenakis Z, Giang KW, Rosengren A, Eriksson P, Dellborg M. Long-term outcomes after myocardial infarction in middle-aged and older patients with congenital heart disease—a nationwide study. Eur Heart J. 2021;42(26):2577–86.

    Article  Google Scholar 

  164. Polizzotti BD, Ganapathy B, Walsh S, Choudhury S, Ammanamanchi N, Bennett DG, et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med. 2015;7(281):281ra45.

  165. Liu D, Shu G, Jin F, Qi J, Xu X, Du Y, et al. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. Sci Adv. 2020;6(41):eabb7422.

  166. Ronco C, Ricci Z, De Backer D, Kellum JA, Taccone FS, Joannidis M, et al. Renal replacement therapy in acute kidney injury: controversy and consensus. Crit Care. 2015;19(1):146.

    Article  Google Scholar 

  167. Zhang L, Jiang F, Chen Y, Luo J, Liu S, Zhang B, et al. Necrostatin-1 attenuates ischemia injury induced cell death in rat tubular cell line NRK-52E through decreased Drp1 expression. Int J Mol Sci. 2013;14(12):24742–54.

    Article  Google Scholar 

  168. Heung M, Ortega LM, Chawla LS, Wunderink RG, Self WH, Koyner JL, et al. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury. Nephrol Dial Transplant. 2016;31(10):1633–40.

    Article  CAS  Google Scholar 

  169. Sengthavisouk N, Lumlertgul N, Keomany C, Banouvong P, Senavong P, Sayyaphet S, et al. Epidemiology and short-term outcomes of acute kidney injury among patients in the intensive care unit in Laos: a nationwide multicenter, prospective, and observational study. BMC Med. 2020;18(1):180.

    Article  Google Scholar 

  170. Aouache R, Biquard L, Vaiman D, Miralles F. Oxidative stress in preeclampsia and placental diseases. Int J Mol Sci. 2018;19(5):1496.

    Article  Google Scholar 

  171. Sufriyana H, Wu YW, Su EC. Artificial intelligence-assisted prediction of preeclampsia: development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia. EBioMedicine. 2020;54:102710.

    Article  Google Scholar 

  172. Verma S, Pillay P, Naicker T, Moodley J, Mackraj I. Placental hypoxia inducible factor -1α & CHOP immuno-histochemical expression relative to maternal circulatory syncytiotrophoblast micro-vesicles in preeclamptic and normotensive pregnancies. Eur J Obstet Gynecol Reprod Biol. 2018;2:2018–24.

    Google Scholar 

  173. Madar-Shapiro L, Karady I, Trahtenherts A, Syngelaki A, Akolekar R, Poon L, et al. Predicting the risk to develop preeclampsia in the first trimester combining promoter variant -98A/C of LGALS13 (Placental Protein 13), black ethnicity, previous preeclampsia, obesity, and maternal age. Fetal Diagn Ther. 2018;43(4):250–65.

    Article  Google Scholar 

  174. Tianthong W, Phupong V. Serum hypoxia-inducible factor-1α and uterine artery Doppler ultrasound during the first trimester for prediction of preeclampsia. Sci Rep. 2021;11(1):6674.

    Article  CAS  Google Scholar 

  175. Kelly CB, Hookham MB, Yu JY, Jenkins AJ, Nankervis AJ, Hanssen KF, et al. Subclinical first trimester renal abnormalities are associated with preeclampsia in normoalbuminuric women with type 1 diabetes. Diabetes Care. 2018;41(1):120–7.

    Article  CAS  Google Scholar 

  176. Zheng WF, Zhan J, Chen A, Ma H, Yang H, Maharjan R. Diagnostic value of neutrophil-lymphocyte ratio in preeclampsia: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2019;98(51):e18496.

    Article  Google Scholar 

  177. Whigham CA, MacDonald TM, Walker SP, Hiscock R, Hannan NJ, Pritchard N, et al. MicroRNAs 363 and 149 are differentially expressed in the maternal circulation preceding a diagnosis of preeclampsia. Sci Rep. 2020;10(1):18077.

    Article  CAS  Google Scholar 

  178. Kovo M, Schreiber L, Ben-Haroush A, Gold E, Golan A, Bar J. The placental component in early-onset and late-onset preeclampsia in relation to fetal growth restriction. Prenat Diagn. 2012;32(7):632–7.

    Article  Google Scholar 

  179. Nelson DB, Ziadie MS, McIntire DD, Rogers BB, Leveno KJ. Placental pathology suggesting that preeclampsia is more than one disease. Am J Obstet Gynecol. 2014;210(1):66.e1-7.

    Article  Google Scholar 

  180. Brkić J, Dunk C, O’Brien J, Fu G, Nadeem L, Wang YL, et al. MicroRNA-218–5p promotes endovascular trophoblast differentiation and spiral artery remodeling. Mol Ther. 2018;26(9):2189–205.

    Article  Google Scholar 

  181. Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33(3):130–7.

    Article  Google Scholar 

  182. Clarkson-Townsend DA, Kennedy E, Everson TM, Deyssenroth MA, Burt AA, Hao K, et al. Seasonally variant gene expression in full-term human placenta. Faseb j. 2020;34(8):10431–42.

    Article  CAS  Google Scholar 

  183. Boss A, Bishop KS, Marlow G, Barnett MP, Ferguson LR. Evidence to support the anti-cancer effect of olive leaf extract and future directions. Nutrients. 2016;8(8):513.

    Article  Google Scholar 

  184. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  Google Scholar 

  185. Bulusu V, Tumanov S, Michalopoulou E, van den Broek NJ, MacKay G, Nixon C, et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 2017;18(3):647–58.

    Article  CAS  Google Scholar 

  186. Oshi M, Takahashi H, Tokumaru Y, Yan L, Rashid OM, Nagahashi M, et al. The E2F pathway score as a predictive biomarker of response to neoadjuvant therapy in ER+/HER2- breast cancer. Cells. 2020;9(7):1643.

    Article  CAS  Google Scholar 

  187. Martinez-Carreres L, Nasrallah A, Fajas L. Cancer: linking powerhouses to suicidal bags. Front Oncol. 2017;7:204.

    Article  Google Scholar 

  188. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    Article  CAS  Google Scholar 

  189. McGregor AL, Hsia CR, Lammerding J. Squish and squeeze-the nucleus as a physical barrier during migration in confined environments. Curr Opin Cell Biol. 2016;40:32–40.

    Article  CAS  Google Scholar 

  190. Limia CM, Sauzay C, Urra H, Hetz C, Chevet E, Avril T. Emerging roles of the endoplasmic reticulum associated unfolded protein response in cancer cell migration and invasion. Cancers (Basel). 2019;11(5):631.

    Article  CAS  Google Scholar 

  191. Koh I, Cha J, Park J, Choi J, Kang SG, Kim P. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue-derived extracellular matrix-based three-dimensional tumor model. Sci Rep. 2018;8(1):4608.

    Article  Google Scholar 

  192. Saraf AJ, Fenger JM, Roberts RD. Osteosarcoma: accelerating progress makes for a hopeful future. Front Oncol. 2018;8:4.

    Article  Google Scholar 

  193. Deng X, Deng J, Yi X, Zou Y, Liu H, Li C, et al. Ubiquitin-like protein FAT10 promotes osteosarcoma glycolysis and growth by upregulating PFKFB3 via stabilization of EGFR. Am J Cancer Res. 2020;10(7):2066–82.

    CAS  Google Scholar 

  194. Kiss A, Ráduly AP, Regdon Z, Polgár Z, Tarapcsák S, Sturniolo I, et al. Targeting nuclear NAD(+) synthesis inhibits DNA repair, impairs metabolic adaptation and increases chemosensitivity of U-2OS osteosarcoma cells. Cancers (Basel). 2020;12(5):1180.

    Article  CAS  Google Scholar 

  195. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47.

    Article  CAS  Google Scholar 

  196. Zhang L, Zhang J, Liu Y, Zhang P, Nie J, Zhao R, et al. Mitochondrial STAT5A promotes metabolic remodeling and the Warburg effect by inactivating the pyruvate dehydrogenase complex. Cell Death Dis. 2021;12(7):634.

    Article  CAS  Google Scholar 

  197. Deng H, Fan X, Wang X, Zeng L, Zhang K, Zhang X, et al. Serum pentraxin 3 as a biomarker of hepatocellular carcinoma in chronic hepatitis B virus infection. Sci Rep. 2020;10(1):20276.

    Article  CAS  Google Scholar 

  198. Fu Y, Xu X, Huang D, Cui D, Liu L, Liu J, et al. Plasma Heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: an official, large-scale, and multicenter clinical trial. EBioMedicine. 2017;2:456–63.

    Google Scholar 

  199. Fu J, Li Y, Li Z, Li N. Clinical utility of decarboxylation prothrombin combined with α-fetoprotein for diagnosing primary hepatocellular carcinoma. 2018. Biosci Rep. https://doi.org/10.1042/BSR20180044.

  200. Daniele B, Bencivenga A, Megna AS, Tinessa V. Alpha-fetoprotein and ultrasonography screening for hepatocellular carcinoma. Gastroenterology. 2004;127(5 Suppl 1):S108–12.

    Article  Google Scholar 

  201. Huang X, Sun L, Wen S, Deng D, Wan F, He X, et al. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci. 2020;111(9):3338–49.

    Article  CAS  Google Scholar 

  202. Wang J, Li F, Xu Y, Zheng X, Zhang C, Hu C, et al. Dissecting immune cell stat regulation network reveals biomarkers to predict ICB therapy responders in melanoma. J Transl Med. 2021;19(1):296.

    Article  CAS  Google Scholar 

  203. Xu W, Wei Q, Han M, Zhou B, Wang H, Zhang J, et al. CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer. Int J Biol Sci. 2018;14(9):1054–66.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2019YFC0840600 and 2019YFC0840609), Young Scientists Fund of the National Natural Scientific Foundation (NSFC81900572), and the Independent Project Fund of the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the National Key Research and Development Program of China (2022zz10).

Author information

Authors and Affiliations

Authors

Contributions

Lanjuan Li and Hongcui Cao designed and guided the study. Juan Lu and Danhua Zhu wrote and edited the manuscript. Xiaoqian Zhang and Jie Wang helped with the reference collection. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lanjuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Zhu, D., Zhang, X. et al. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. Clin Transl Oncol 25, 137–150 (2023). https://doi.org/10.1007/s12094-022-02943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02943-3

Keywords

Navigation