Skip to main content
Log in

Influence of functionalized MWCNT on microstructure and mechanical properties of cement paste

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Today, studies on nanotechnology applications in the construction industry are looking for a solution to reduce the use of cement and consequently to reduce the emission of pollutants in the environment. In this regard, the effect of different percentages of the functionalized multi-walled carbon nanotubes with carboxylic groups (MWCNT) on the modification of mechanical and microstructural properties of hardened cement paste was investigated. The addition ratios of Portland cement with the same weight of MWCNT-COOHs were 0, 0.025, 0.05, 0.1, and 0.2 weight percent (wt%). Moreover, the mechanical and microstructural properties of the hardened cement paste were investigated by the use of Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), X-powder, scanning electron microscope (SEM) and atomic force microscope (AFM) techniques. The results show that replacement of cement with 0.05 wt% of the functionalized carbon nanotube, as the optimal amount, can be considered both for improving mechanical and microstructural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Greco E, Ciliberto E, Verdura P D, Giudice E L and Navarra G 2016 Nanoparticle-based concretes for the restoration of historical and contemporary buildings: a new way for CO2 reduction in architecture. Appl. Phys. A 122: 524

    Article  Google Scholar 

  2. Zhu W, Bartos P J and Porro A 2004 Application of nanotechnology in construction. Mater. Struct. 37: 649–658

    Article  Google Scholar 

  3. Bahari A, Sadeghi-Nik A, Roodbari M, Sadeghi-Nik A and Mirshafiei E 2018 Experimental and theoretical studies of ordinary Portland cement composites contains nano LSCO perovskite with Fokker–Planck and chemical reaction equations. Constr. Build. Mater. 163: 247–255

    Article  Google Scholar 

  4. Nik A S, Bahari A and Nik A S 2011 Investigation of nano structural properties of cement-based materials. Am. J. Sci. Res. 25: 104–111

    Google Scholar 

  5. Nik A S, Bahari A and Amiri B 2011 Nanostructural properties of cement–matrix composite. J. Basic Appl. Sci. Res. 11: 2167–2173

    Google Scholar 

  6. Singh A P, Gupta B K, Mishra M, Chandra A, Mathur R B and Dhawan S K 2013 Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon 56: 86–96

    Article  Google Scholar 

  7. Sadeghi-Nik A, Berenjian J, Alimohammadi S, Lotfi-Omran O, Sadeghi-Nik A and Karimaei M 2019 The effect of recycled concrete aggregates and metakaolin on the mechanical properties of self-compacting concrete containing nanoparticles. Iran. J. Sci. Technol. Trans. Civ. Eng. https://doi.org/10.1007/s40996-018-0182-4

  8. Sadeghi-Nik A, Bahari A, Khorshidi Z and Gholipur R 2012 Effect of lanthanum oxide on the bases of cement and concrete. In: Third International Conference on Construction in Developing Countries (Advancing Civil, Architectural and Construction Engineering & Management), Bangkok, Thailand, 707–712

  9. Nik A S and Bahari A 2010 Nano-Particles in Concrete and Cement Mixtures. In: International Conference on Nano Science and Technology. Chengdu, China, 221–223

  10. Amiri B, Bahari A, Nik A S, Nik A S and Movahedi N S 2012 Use of AFM technique to study the nano-silica effects in concrete mixture. Indian J. Sci. Technol. 5: 2055–2059

    Google Scholar 

  11. Dastan D, Panahi S L and Chaure N B 2016 Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci.: Mater. Electron. 27: 12291–12296

    Article  Google Scholar 

  12. Dastan D, Londhe P U and Chaure N B 2014 Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J. Mater. Sci.: Mater. Electron. 25: 3473–3479

    Google Scholar 

  13. Nik A S, Bahari A, Nik A S and Khalilpasha M H 2011 Nanotechnology coating of buildings with sol– gel method. Am. J. Sci. Res. 31: 69–72

    Google Scholar 

  14. Dastan D 2017 Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123: 699

    Article  Google Scholar 

  15. Kurdowski W 2014 Cement and concrete chemistry. Springer Science & Business, Chapter 7, pp. 573–578

  16. Bahari A, Sadeghi-Nik A, Roodbari M and Mirnia N 2012 Investigation the Al–Fe–Cr–Ti nano composites structures with using XRD and AFM techniques. Sadhana 37: 657–664

    Article  Google Scholar 

  17. Bahari A, Sadeghi-Nik A, Roodbari M, Mirshafiei E and Amiri B 2015 Effect of silicon carbide nano dispersion on the mechanical and nano structural properties of cement. Natl. Acad. Sci. Lett. 38: 361–364.

    Article  Google Scholar 

  18. Bahari A, Sadeghi Nik A, Roodbari M, Taghavi K and Mirshafiei S E 2012 Synthesis and strength study of cement mortars containing sic nano particles. Dig. J. Nanomater. Biostruct. 7: 1427–1435

    Google Scholar 

  19. Bahari A, Berenjian J and Sadeghi-Nik A 2016 Modification of Portland cement with nano SiC. Proc. Natl. Acad. Sci. India Sect. A - Phys. Sci. 86: 323–331

    Article  Google Scholar 

  20. Zhang H, Guo L, Song Q, Fu Q, Li H and Li K 2013 Microstructure and flexural properties of carbon/carbon composite with in-situ grown carbon nanotube as secondary reinforcement. Prog. Nat. Sci.: Mater. Int. 23: 157–163

    Article  Google Scholar 

  21. Björnström J 2003 Effect of superplasticizers on the rheological properties of cements. Mater. Struct. 36: 685–692

    Article  Google Scholar 

  22. Sobolev K and Gutiérrez M F 2005 How nanotechnology can change the concrete world. Am. Ceram. Soc. Bull. 84: 14–18

    Google Scholar 

  23. Bagheri A, Parhizkar T, Madani H and Raisghasemi A M 2013 The influence of different preparation methods on the aggregation status of pyrogenic nanosilicas used in concrete. Mater. Struct. 46: 135–143

    Article  Google Scholar 

  24. Parveen S, Rana S, Fangueiro R and Paiva M C 2015 Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cem. Concrete Res. 73: 215–227

    Article  Google Scholar 

  25. Ghaharpour F, Bahari A, Abbasi M and Ashkarran AA 2016 Parametric investigation of CNT deposition on cement by CVD process. Constr. Build. Mater. 113: 523–535

    Article  Google Scholar 

  26. Plassard C, Lesniewska E, Pochard I and Nonat A 2004 Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale. Ultramicroscopy 100: 331–338

    Article  Google Scholar 

  27. Häußler F, Palzer S, Eckart A and Hoell A 2002 Microstructural SANS–studies of hydrating tricalcium silicate (C3S). Appl. Phys. A 74: 1124–1127

    Article  Google Scholar 

  28. Li G Y, Wang P M and Zhao X 2005 Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43: 1239–1245

    Article  Google Scholar 

  29. Li G Y, Wang P M and Zhao X 2007 Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concrete Compos. 29: 377–382

    Article  Google Scholar 

  30. Cwirzen A, Habermehl-Cwirzen K and Penttala V 2008 Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 20: 65–73

    Article  Google Scholar 

  31. Sobolkina A, Mechtcherine V, Khavrus V, Maier D, Mende M, Ritschel M and Leonhardt A 2012 Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concrete Compos. 34: 1104–1113

    Article  Google Scholar 

  32. Manzur T and Yazdani N 2015 Optimum mix ratio for carbon nanotubes in cement mortar. KSCE J. Civ. Eng. 19: 1405–1412.

    Article  Google Scholar 

  33. ASTM C150-04 2004 Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA

    Google Scholar 

  34. ASTM C511-13 2013 Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes. ASTM International, West Conshohocken, PA

    Google Scholar 

  35. ASTM C109/C109M-02 2002 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, West Conshohocken, PA

  36. ASTM C348-02 2002 Standard Test Method for Flexural Strength of Hydrauliccement Mortars. ASTM International, West Conshohocken, PA

    Google Scholar 

  37. Derlet P M, Van Petegem S and Van Swygenhoven H 2005 Calculation of x-ray spectra for nanocrystalline materials. Phys. Rev. B 71: 024114

    Article  Google Scholar 

  38. Gomes C E M, Ferreira O P and Fernandes M R 2005 Influence of vinyl acetate-versatic vinylester copolymer on the microstructural characteristics of cement pastes. Mater. Res. 8: 51–56

    Article  Google Scholar 

  39. Barnett S J, Macphee D E, Lachowski E E and Crammond N J 2002 XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite. Cem. Concrete Res. 32: 719–730

    Article  Google Scholar 

  40. Mollah M Y A, Lu F and Cocke D L 1998 An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) characterization of the speciation of arsenic (V) in Portland cement type-V. Sci. Total Environ. 224: 57–68

    Article  Google Scholar 

  41. Pera J, Husson S and Guilhot B 1999 Influence of finely ground limestone on cement hydration. Cem. Concrete Compos. 21: 99–105

    Article  Google Scholar 

  42. Kafi M A, Sadeghi-Nik A, Bahari A, Sadeghi-Nik A and Mirshafiei E 2016 Microstructural characterization and mechanical properties of cementitious mortar containing montmorillonite nanoparticles. J. Mater. Civ. Eng. 28: 04016155

    Article  Google Scholar 

  43. Sadeghi-Nik A, Berenjian J, Bahari A, Safaei A S and Dehestani M 2017 Modification of microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Constr. Build. Mater. 155: 880–891

    Article  Google Scholar 

  44. Hughes T L, Methven C M, Jones T G, Pelham S E, Fletcher P and Hall C 1995 Determining cement composition by Fourier transform infrared spectroscopy. Adv. Cem. Based Mater. 2: 91–104

    Article  Google Scholar 

  45. Kloprogge J T, Schuiling R D, Ding Z, Hickey L, Wharton D and Frost R L 2002 Vibrational spectroscopic study of syngenite formed during the treatment of liquid manure with sulphuric acid. Vib. Spectrosc. 28: 209–221.

    Article  Google Scholar 

  46. Trezza M A and Lavat A E 2001 Analysis of the system 3CaO·Al2O3–CaSO4·2H2O–CaCO3–H2O by FT-IR spectroscopy. Cem. Concrete Res. 31: 869–872

    Article  Google Scholar 

  47. Yu P, Kirkpatrick R J, Poe B, McMillan P F and Cong X 1999 Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82: 742–748

    Article  Google Scholar 

  48. Mollah M Y A, Yu W, Schennach R and Cocke D L 2000 A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cem. Concrete Res. 30: 267–273

    Article  Google Scholar 

  49. Ghosh S N and Handoo S K 1980 Infrared and Raman spectral studies in cement and concrete. Cem. Concrete Res. 10: 771–782

    Article  Google Scholar 

  50. Mollah M Y, Kesmez M and Cocke D L 2004 An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic (V) in Portland cement type-V. Sci. Total Environ. 325: 255–262

    Article  Google Scholar 

  51. Richard T, Mercury L, Poulet F and d’Hendecourt L 2006 Diffuse reflectance infrared Fourier transform spectroscopy as a tool to characterise water in adsorption/confinement situations. J. Colloid Interface Sci. 304: 125–136

    Article  Google Scholar 

  52. Ylmén R, Jäglid U, Steenari B M and Panas I 2009 Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem. Concrete Res. 39: 433–439

    Article  Google Scholar 

  53. Silva D A D, Roman H R and Gleize P J P 2002 Evidences of chemical interaction between EVA and hydrating Portland cement. Cem. Concrete Res. 32: 1383–1390.

    Article  Google Scholar 

  54. Delgado A H, Paroli R M and Beaudoin J J 1996 Comparison of IR techniques for the characterization of construction cement minerals and hydrated products. Appl. Spectrosc. 50: 970–976

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, M.A., Bahari, A. Influence of functionalized MWCNT on microstructure and mechanical properties of cement paste. Sādhanā 44, 103 (2019). https://doi.org/10.1007/s12046-019-1087-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-019-1087-z

Keywords

Navigation