Skip to main content
Log in

Edaravone Maintains AQP4 Polarity Via OS/MMP9/β-DG Pathway in an Experimental Intracerebral Hemorrhage Mouse Model

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxidative stress (OS) is the main cause of secondary damage following intracerebral hemorrhage (ICH). The polarity expression of aquaporin-4 (AQP4) has been shown to be important in maintaining the homeostasis of water transport and preventing post-injury brain edema in various neurological disorders. This study primarily aimed to investigate the effect of the oxygen free radical scavenger, edaravone, on AQP4 polarity expression in an ICH mouse model and determine whether it involves in AQP4 polarity expression via the OS/MMP9/β-dystroglycan (β-DG) pathway. The ICH mouse model was established by autologous blood injection into the basal nucleus. Edaravone or the specific inhibitor of matrix metalloproteinase 9 (MMP9), MMP9-IN-1, called MMP9-inh was administered 10 min after ICH via intraperitoneal injection. ELISA detection, neurobehavioral tests, dihydroethidium staining (DHE staining), intracisternal tracer infusion, hematoxylin and eosin (HE) staining, immunofluorescence staining, western blotting, Evans blue (EB) permeability assay, and brain water content test were performed. The results showed that OS was exacerbated, AQP4 polarity was lost, drainage function of brain fluids was damaged, brain injury was aggravated, expression of AQP4, MMP9, and GFAP increased, while the expression of β-DG decreased after ICH. Edaravone reduced OS, restored brain drainage function, reduced brain injury, and downregulated the expression of AQP4, MMP9. Both edaravone and MMP9-inh alleviated brain edema, maintained blood–brain barrier (BBB) integrity, mitigated the loss of AQP4 polarity, downregulated GFAP expression, and upregulated β-DG expression. The current study suggests that edaravone can maintain AQP4 polarity expression by inhibiting the OS /MMP9/β-DG pathway after ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed in the current study are available from the corresponding authors on request.

References

  1. Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11(8):720–731. https://doi.org/10.1016/S1474-4422(12)70104-7

    Article  CAS  PubMed  Google Scholar 

  2. Shao Z, Tu S, Shao A (2019) Pathophysiological mechanisms and potential therapeutic targets in intracerebral hemorrhage. Front Pharmacol 10. https://doi.org/10.3389/fphar.2019.01079

  3. Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z et al (2019) Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 178:6–30. https://doi.org/10.1016/j.pneurobio.2019.03.003

    Article  CAS  Google Scholar 

  4. Shao A, Zhu Z, Li L, Zhang S, Zhang J (2019) Emerging therapeutic targets associated with the immune system in patients with intracerebral haemorrhage (ICH): from mechanisms to translation. EBioMedicine 45:615–623. https://doi.org/10.1016/j.ebiom.2019.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen W, Guo C, Feng H, Chen Y (2021) Mitochondria: novel mechanisms and therapeutic targets for secondary brain injury after intracerebral hemorrhage. Front Aging Neurosci 12 https://doi.org/10.3389/fnagi.2020.615451

  6. Candelario-Jalil E, Dijkhuizen RM, Magnus T (2022) Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 53(5):1473–1486. https://doi.org/10.1161/STROKEAHA.122.036946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang X, Zhu HC, Yang D, Zhang FC, Mane R, Sun SJ et al (2022) Association between cerebral blood flow changes and blood-brain barrier compromise in spontaneous intracerebral haemorrhage. Clin Radiol 77(11):833–839. https://doi.org/10.1016/j.crad.2022.05.028

    Article  CAS  PubMed  Google Scholar 

  8. Jia P, He J, Li Z, Wang J, Jia L, Hao R, et al. (2021) Profiling of blood-brain barrier disruption in mouse intracerebral hemorrhage models: collagenase injection vs. autologous arterial whole blood infusion. Front Cell Neurosci 15. https://doi.org/10.3389/fncel.2021.699736

  9. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175. https://doi.org/10.1016/j.cbi.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  10. Katsu M, Niizuma K, Yoshioka H, Okami N, Sakata H, Chan PH (2010) Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 30(12):1939–1950. https://doi.org/10.1038/jcbfm.2010.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu X, Wang Y, Du W, Liang L-J, Wang W, Jin X (2022) Role of glial cell-derived oxidative stress in blood-brain barrier damage after acute ischemic stroke. Oxid Med Cell Longev 2022. https://doi.org/10.1155/2022/7762078

  12. Huang LJ, Zhan D, Xing Y, Yan YQ, Li Q, Zhang JY, et al. (2023) FGL2 deficiency alleviates maternal inflammation-induced blood-brain barrier damage by blocking PI3K/NF-kappa B mediated endothelial oxidative stress. Front Immunol 14. https://doi.org/10.3389/fimmu.2023.1157027

  13. Offen D, Gilgun-Sherki Y, Barhum Y, Benhar M, Grinberg L, Reich R et al (2004) A low molecular weight copper chelator crosses the blood-brain barrier and attenuates experimental autoimmune encephalomyelitis. J Neurochem 89(5):1241–1251. https://doi.org/10.1111/j.1471-4159.2004.02428.x

    Article  CAS  PubMed  Google Scholar 

  14. Kurata S (2000) Selective activation of p38 MAPK cascade and mitotic arrest caused by low level oxidative stress. J Biol Chem 275(31):23413–23416. https://doi.org/10.1074/jbc.C000308200

    Article  CAS  PubMed  Google Scholar 

  15. Ronaldson PT, Davis TP (2020) Regulation of blood-brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J Cereb Blood Flow Metab 40(1_SUPPL):S6–S24. https://doi.org/10.1177/0271678X20951995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee KH, Cha M, Lee BH (2021) Crosstalk between neuron and glial cells in oxidative injury and neuroprotection. Int J Mol Sci 22(24). https://doi.org/10.3390/ijms222413315

  17. Saadoun S, Papadopoulos MC (2010) Aquaporin-4 in brain and spinal cord oedema. Neuroscience 168(4):1036–1046. https://doi.org/10.1016/j.neuroscience.2009.08.019

    Article  CAS  PubMed  Google Scholar 

  18. Manley GT, Fujimura M, Ma TH, Noshita N, Filiz F, Bollen AW et al (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6(2):159–163. https://doi.org/10.1038/72256

    Article  CAS  PubMed  Google Scholar 

  19. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147). https://doi.org/10.1126/scitranslmed.3003748

  20. Zou Y-Y, Yuan Y, Kan EM, Lu J, Ling E-A (2014) Combustion smoke-induced inflammation in the olfactory bulb of adult rats. J Neuroinflammation 11. https://doi.org/10.1186/s12974-014-0176-5

  21. Wang F-x, Xu C-l, Su C, Li J, Lin J-Y (2022) beta-Hydroxybutyrate attenuates painful diabetic neuropathy via restoration of the aquaporin-4 polarity in the spinal glymphatic system. Front Neurosci 16. https://doi.org/10.3389/fnins.2022.926128

  22. Gao M, Lu W, Shu Y, Yang Z, Sun S, Xu J et al (2020) Poldip2 mediates blood-brain barrier disruption and cerebral edema by inducing AQP4 polarity loss in mouse bacterial meningitis model. CNS Neurosci Ther 26(12):1288–1302. https://doi.org/10.1111/cns.13446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci USA 98(24):14108–13. https://doi.org/10.1073/pnas.241508198

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amiry-Moghaddam M, Frydenlund DS, Ottersen OP (2004) Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129(4):999–1010. https://doi.org/10.1016/j.neuroscience.2004.08.049

    Article  CAS  PubMed  Google Scholar 

  25. Waite A, Brown SC, Blake DJ (2012) The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci 35(8):487–496. https://doi.org/10.1016/j.tins.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  26. Bozzi M, Inzitari R, Sbardell D, Monaco S, Pavoni E, Gioia M et al (2009) Enzymatic processing of β-dystroglycan recombinant ectodomain by MMP-9: identification of the main cleavage site. IUBMB Life 61(12):1143–1152. https://doi.org/10.1002/iub.273

    Article  CAS  PubMed  Google Scholar 

  27. Yan W, Zhao X, Chen H, Zhong D, Jin J, Qin Q et al (2016) beta-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia. Neuroscience 326:141–157. https://doi.org/10.1016/j.neuroscience.2016.03.055

    Article  CAS  PubMed  Google Scholar 

  28. Shichinohe H, Kuroda S, Yasuda H, Ishikawa T, Iwai M, Horiuchi M et al (2004) Neuroprotective effects of the free radical scavenger Edaravone (MCI-186) in mice permanent focal brain ischemia. Brain Res 1029(2):200–206. https://doi.org/10.1016/j.brainres.2004.09.055

    Article  CAS  PubMed  Google Scholar 

  29. Lu F, Nakamura T, Toyoshima T, Liu Y, Hirooka K, Kawai N et al (2012) Edaravone, a free radical scavenger, attenuates behavioral deficits following transient forebrain ischemia by inhibiting oxidative damage in gerbils. Neurosci Lett 506(1):28–32. https://doi.org/10.1016/j.neulet.2011.10.041

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura T, Kuroda Y, Yamashita S, Zhang X, Miyamoto O, Tamiya T et al (2008) Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke 39(2):463–469. https://doi.org/10.1161/STROKEAHA.107.486654

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Yang Y, Zhang G-Z, Gao M, Ge G-Z, Wang Q-Q et al (2016) Stereotactic administration of edaravone ameliorates collagenase-induced intracerebral hemorrhage in rat. CNS Neurosci Ther 22(10):824–835. https://doi.org/10.1111/cns.12584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hua Y, Zhou L, Yang W, An W, Kou X, Ren J, et al. (2010) Y-2 reduces oxidative stress and inflammation and improves neurological function of collagenase-induced intracerebral hemorrhage rats. Eur J Pharmacol 910. https://doi.org/10.1016/j.ejphar.2021.174507

  33. Yang J, Liu M, Zhou J, Zhang S, Lin S, Zhao H (2011) Edaravone for acute intracerebral haemorrhage. Cochrane Database Syst Rev (2). https://doi.org/10.1002/14651858.CD007755.pub2

  34. Zhao F, Liu Z (2014) Beneficial effects of edaravone on the expression of serum matrix metalloproteinase-9 after cerebral hemorrhage. Neurosciences 19(2):106–110

    PubMed  Google Scholar 

  35. Yang Z, Huang J, Liao Y, Gan S, Zhu S, Xu S et al (2022) ER stress is involved in mast cells degranulation via IRE1 alpha/miR-125/ Lyn pathway in an experimental intracerebral hemorrhage mouse model. Neurochem Res 47(6):1598–1609. https://doi.org/10.1007/s11064-022-03555-7

    Article  CAS  PubMed  Google Scholar 

  36. Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME et al (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62(1):74–85. https://doi.org/10.1016/j.cardiores.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  37. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L et al (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34(49):16180–16193. https://doi.org/10.1523/JNEUROSCI.3020-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sule R, Rivera G, Gomes AV (2023) Western blotting (immunoblotting): history, theory, uses, protocol and problems. Biotechniques https://doi.org/10.2144/btn-2022-0034

  39. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505–17. https://doi.org/10.1089/ars.2010.3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li W, Yang S (2016) Targeting oxidative stress for the treatment of ischemic stroke: upstream and downstream therapeutic strategies. Brain Circ 2(4):153–163. https://doi.org/10.4103/2394-8108.195279

    Article  PubMed  PubMed Central  Google Scholar 

  41. Icme F, Erel O, Avci A, Satar S, Gulen M, Acehan S (2015) The relation between oxidative stress parameters, ischemic stroke, and hemorrhagic stroke. Turk J Med Sci 45(4):947–953. https://doi.org/10.3906/sag-1402-9

    Article  CAS  PubMed  Google Scholar 

  42. Neves JD, Vizuete AF, Nicola F, Da Re C, Rodrigues AF, Schmitz F et al (2018) Glial glutamate transporters expression, glutamate uptake, and oxidative stress in an experimental rat model of intracerebral hemorrhage. Neurochem Int 116:13–21. https://doi.org/10.1016/j.neuint.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  43. Zeng Y, Zhu G, Zhu M, Song J, Cai H, Song Y, et al. (2022) Edaravone attenuated particulate matter-induced lung inflammation by inhibiting ROS-NF-kappa B signaling pathway. Oxid Med Cell Longev 2022 https://doi.org/10.1155/2022/6908884

  44. Wu H-T, Yu Y, Li X-X, Lang X-Y, Gu R-Z, Fan S-R et al (2021) Edaravone attenuates H2O2 or glutamate-induced toxicity in hippocampal neurons and improves AlCl3/D-galactose induced cognitive impairment in mice. Neurotoxicology 85:68–78. https://doi.org/10.1016/j.neuro.2021.05.005

    Article  CAS  PubMed  Google Scholar 

  45. Klatzo I (1994) Evolution of brain edema concepts. Acta Neurochir Suppl 60:3–6

    CAS  PubMed  Google Scholar 

  46. Papadopoulos MC, Verkman AS (2007) Aquaporin-4 and brain edema. Pediatr Nephrol 22(6):778–784. https://doi.org/10.1007/s00467-006-0411-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang C, Lin J, Wei F, Song J, Chen W, Shan L et al (2018) Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine. Life Sci 201:150–160. https://doi.org/10.1016/j.lfs.2018.03.057

    Article  CAS  PubMed  Google Scholar 

  48. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra11-ra11. https://doi.org/10.1126/scitranslmed.3003748

    Article  CAS  Google Scholar 

  49. Wolburg-Buchholz K, Mack AF, Steiner E, Pfeiffer F, Engelhardt B, Wolburg H (2009) Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol 118(2):219–233. https://doi.org/10.1007/s00401-009-0558-4

    Article  CAS  PubMed  Google Scholar 

  50. Krafft PR, Caner B, Klebe D, Rolland WB, Tang J, Zhang JH (2010) PHA-543613 preserves blood-brain barrier integrity after intracerebral hemorrhage in mice. Stroke. 44(6):1743-+. https://doi.org/10.1161/STROKEAHA.111.000427

    Article  CAS  Google Scholar 

  51. Steiner E, Enzmann GU, Lin S, Ghavampour S, Hannocks M-J, Zuber B et al (2012) Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia 60(11):1646–1659. https://doi.org/10.1002/glia.22383

    Article  PubMed  Google Scholar 

  52. Noell S, Wolburg-Buchholz K, Mack AF, Beedle AM, Satz JS, Campbell KP et al (2011) Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet. Eur J Neurosci 33(12):2179–2186. https://doi.org/10.1111/j.1460-9568.2011.07688.x

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gondo A, Shinotsuka T, Morita A, Abe Y, Yasui M, Nuriya M (2014) Sustained down-regulation of beta-dystroglycan and associated dysfunctions of astrocytic endfeet in epileptic cerebral cortex. J Biol Chem 289(44):30279–30288. https://doi.org/10.1074/jbc.M114.588384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Velasquez M, O'Sullivan C, Brockett R, Mikels-Vigdal A, Mikaelian I, Smith V, et al. (2023) Characterization of active MMP9 in chronic inflammatory diseases using a novel anti-MMP9 antibody. Antibodies (Basel, Switzerland) 12(1) https://doi.org/10.3390/antib12010009

  55. Sbardella D, Inzitari R, Iavarone F, Gioia M, Marini S, Sciandra F et al (2012) Enzymatic processing by MMP-2 and MMP-9 of wild-type and mutated mouse ss-dystroglycan. IUBMB Life 64(12):988–994. https://doi.org/10.1002/iub.1095

    Article  CAS  PubMed  Google Scholar 

  56. Chen C, Fan P, Zhang L, Xue K, Hu J, Huang J et al (2023) Bumetanide rescues aquaporin-4 depolarization via suppressing p-Dys-troglycan cleavage and provides neuroprotection in rat retinal ischemia-reperfusion injury. Neuroscience 510:95–108. https://doi.org/10.1016/j.neuroscience.2022.11.033

    Article  CAS  PubMed  Google Scholar 

  57. Simone L, Pisani F, Mola MG, De Bellis M, Merla G, Micale L et al (2019) AQP4 aggregation state is a determinant for glioma cell fate. Can Res 79(9):2182–2194. https://doi.org/10.1158/0008-5472.CAN-18-2015

    Article  CAS  Google Scholar 

  58. Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K, Suzuki H et al (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 355(4):628–639. https://doi.org/10.1016/j.jmb.2005.10.081

    Article  CAS  PubMed  Google Scholar 

  59. Silberstein C, Bouley R, Huang Y, Fang PK, Pastor-Soler N, Brown D et al (2004) Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol Renal Physiol 287(3):F501–F511. https://doi.org/10.1152/ajprenal.00439.2003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC 82171457), Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1083), and Program for Youth Innovation in Future Medicine, Chongqing Medical University (W0031).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection, and analysis were performed by Zhenhua Wang, Yuan Li, and Zhixu Wang. The initial draft of the manuscript was written by Zhenghua Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Juan Huang or Weitian Lu.

Ethics declarations

Ethics Approval

This project involves the purchase of animals from the Animal Center of Chongqing Medical University. The experimental protocol has been reviewed by the Institutional Animal Care and Use Committee of Chongqing Medical University (IACUC-CQMU) and is in accordance with principles of animal protection, animal welfare, and ethics. It complies with relevant regulations on the welfare and ethics of experimental animals in the country (Approval No: IACUC-CQMU-2023–0117).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, Y., Wang, Z. et al. Edaravone Maintains AQP4 Polarity Via OS/MMP9/β-DG Pathway in an Experimental Intracerebral Hemorrhage Mouse Model. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04028-4

Keywords

Navigation