Skip to main content
Log in

Rapamycin Alleviates Neuronal Injury and Modulates Microglial Activation After Cerebral Ischemia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurons and microglia are sensitive to cerebral microcirculation and their responses play a crucial part in the pathological processes, while they are also the main target cells of many drugs used to treat brain diseases. Rapamycin exhibits beneficial effects in many diseases; however, whether it can affect neuronal injury or alter the microglial activation after global cerebral ischemia remains unclear. In this study, we performed global cerebral ischemia combined with rapamycin treatment in CX3CR1GFP/+ mice and explored the effects of rapamycin on neuronal deficit and microglial activation. Our results showed that rapamycin reduced neuronal loss, neurodegeneration, and ultrastructural damage after ischemia by histological staining and transmission electron microscopy (TEM). Interestingly, rapamycin suppressed de-ramification and proliferation of microglia and reduced the density of microglia. Immunofluorescence staining indicated that rapamycin skewed microglial polarization toward an anti-inflammatory state. Furthermore, rapamycin as well suppressed the activation of astrocytes. Meanwhile, quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed a significant reduction of pro-inflammatory factors as well as an elevation of anti-inflammatory factors upon rapamycin treatment. As a result of these effects, behavioral tests showed that rapamycin significantly alleviated the brain injury after stroke. Together, our study suggested that rapamycin attenuated neuronal injury, altered microglial activation state, and provided a more beneficial immune microenvironment for the brain, which could be used as a promising therapeutic approach to treat ischemic cerebrovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data supporting the findings of this article are available from the corresponding author on reasonable request.

Abbreviations

TEM:

Transmission electron microscopy

qRT-PCR:

Quantitative real-time polymerase chain reaction

CNS:

Central nervous system

MCAO:

Middle cerebral artery occlusion

BCAL:

Bilateral common carotid artery ligation

GFP:

Green fluorescent protein

BCCA:

Bilateral common carotid arteries

CBF:

Cerebral blood flow

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

FJC:

Fluoro-Jade C

BrdU:

Bromodeoxyuridine

ANOVA:

Analysis of variance

SEM:

Standard error of the mean

References

  1. ElAli A, Jean LeBlanc N (2016) The role of monocytes in ischemic stroke pathobiology: new avenues to explore. Front Aging Neurosci 8:29. https://doi.org/10.3389/fnagi.2016.00029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm (Vienna) 107(8–9):1027–1063. https://doi.org/10.1007/s007020070051

    Article  PubMed  CAS  Google Scholar 

  3. Kirov SA, Fomitcheva IV, Sword J (2020) Rapid neuronal ultrastructure disruption and recovery during spreading depolarization-induced cytotoxic edema. Cereb Cortex 30(10):5517–5531. https://doi.org/10.1093/cercor/bhaa134

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M et al (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234. https://doi.org/10.1016/j.cell.2009.12.055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(1):133–138. https://doi.org/10.1111/j.1471-4159.2009.05897.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40(5):e331-339. https://doi.org/10.1161/STROKEAHA.108.531632

    Article  PubMed  Google Scholar 

  7. Arumugam TV, Baik SH, Balaganapathy P, Sobey CG, Mattson MP, Jo DG (2018) Notch signaling and neuronal death in stroke. Prog Neurobiol 165–167:103–116. https://doi.org/10.1016/j.pneurobio.2018.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tuttolomondo A, Di Sciacca R, Di Raimondo D, Arnao V, Renda C, Pinto A, Licata G (2009) Neuron protection as a therapeutic target in acute ischemic stroke. Curr Top Med Chem 9(14):1317–1334. https://doi.org/10.2174/156802609789869646

    Article  PubMed  CAS  Google Scholar 

  9. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201. https://doi.org/10.1038/nrneurol.2010.17

    Article  PubMed  Google Scholar 

  10. Yang X, Feng P, Zhang X, Li D, Wang R, Ji C, Li G, Holscher C (2019) The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology 158:107748. https://doi.org/10.1016/j.neuropharm.2019.107748

    Article  PubMed  CAS  Google Scholar 

  11. Zhang S (2019) Microglial activation after ischaemic stroke. Stroke Vasc Neurol 4(2):71–74. https://doi.org/10.1136/svn-2018-000196

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hou B, Jiang C, Wang D, Wang G, Wang Z, Zhu M, Kang Y, Su J et al (2020) Pharmacological targeting of CSF1R inhibits microglial proliferation and aggravates the progression of cerebral ischemic pathology. Front Cell Neurosci 14:267. https://doi.org/10.3389/fncel.2020.00267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li T, Zhang S (2016) Microgliosis in the injured brain: infiltrating cells and reactive microglia both play a role. Neuroscientist 22(2):165–170. https://doi.org/10.1177/1073858415572079

    Article  PubMed  Google Scholar 

  14. Jin X, Ishii H, Bai Z, Itokazu T, Yamashita T (2012) Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS ONE 7(7):e41892. https://doi.org/10.1371/journal.pone.0041892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cai W, Dai X, Chen J, Zhao J, Xu M, Zhang L, Yang B, Zhang W et al (2019) STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4:20. https://doi.org/10.1172/jci.insight.131355

    Article  Google Scholar 

  16. Li S, Hua X, Zheng M, Wu J, Ma Z, Xing X, Ma J, Zhang J et al (2021) PLXNA2 knockdown promotes M2 microglia polarization through mTOR/STAT3 signaling to improve functional recovery in rats after cerebral ischemia/reperfusion injury. Exp Neurol 346:113854. https://doi.org/10.1016/j.expneurol.2021.113854

    Article  PubMed  CAS  Google Scholar 

  17. Lu Y, Zhou M, Li Y, Li Y, Hua Y, Fan Y (2021) Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways. Biochem Pharmacol 186:114464. https://doi.org/10.1016/j.bcp.2021.114464

    Article  PubMed  CAS  Google Scholar 

  18. Gao YY, Tao T, Wu D, Zhuang Z, Lu Y, Wu LY, Liu GJ, Zhou Y et al (2021) MFG-E8 attenuates inflammation in subarachnoid hemorrhage by driving microglial M2 polarization. Exp Neurol 336:113532. https://doi.org/10.1016/j.expneurol.2020.113532

    Article  PubMed  CAS  Google Scholar 

  19. Lei X, Li H, Li M, Dong Q, Zhao H, Zhang Z, Sun B, Mao L (2021) The novel Nrf2 activator CDDO-EA attenuates cerebral ischemic injury by promoting microglia/macrophage polarization toward M2 phenotype in mice. CNS Neurosci Ther 27(1):82–91. https://doi.org/10.1111/cns.13496

    Article  PubMed  CAS  Google Scholar 

  20. Song Z, Feng J, Zhang Q, Deng S, Yu D, Zhang Y, Li T (2021) Tanshinone IIA protects against cerebral ischemia reperfusion injury by regulating microglial activation and polarization via NF-kappaB pathway. Front Pharmacol 12:641848. https://doi.org/10.3389/fphar.2021.641848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhu Y, Yu JB, Gong JB, Shen J, Ye D, Cheng DX, Xie ZK, Zeng JP et al (2021) PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging-Us 13(3):3405–3427

    Article  CAS  Google Scholar 

  22. Li QQ, Ding DH, Wang XY, Sun YY, Wu J (2021) Lipoxin A4 regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the Notch signaling pathway. Exp Neurol 339:113645. https://doi.org/10.1016/j.expneurol.2021.113645

    Article  PubMed  CAS  Google Scholar 

  23. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26(1):86–93. https://doi.org/10.1016/j.nbd.2006.12.003

    Article  PubMed  CAS  Google Scholar 

  24. Zhang G, Yin L, Luo Z, Chen X, He Y, Yu X, Wang M, Tian F et al (2021) Effects and potential mechanisms of rapamycin on MPTP-induced acute Parkinson’s disease in mice. Ann Palliat Med 10(3):2889–2897. https://doi.org/10.21037/apm-20-1096

    Article  PubMed  Google Scholar 

  25. Lin AL, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ, Javors M, Shih YY et al (2013) Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab 33(9):1412–1421. https://doi.org/10.1038/jcbfm.2013.82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gao C, Yan Y, Chen G, Wang T, Luo C, Zhang M, Chen X, Tao L (2020) Autophagy activation represses pyroptosis through the IL-13 and JAK1/STAT1 pathways in a mouse model of moderate traumatic brain injury. ACS Chem Neurosci 11(24):4231–4239. https://doi.org/10.1021/acschemneuro.0c00517

    Article  PubMed  CAS  Google Scholar 

  27. Jiang J, Jiang J, Zuo Y, Gu Z (2013) Rapamycin protects the mitochondria against oxidative stress and apoptosis in a rat model of Parkinson’s disease. Int J Mol Med 31(4):825–832. https://doi.org/10.3892/ijmm.2013.1280

    Article  PubMed  CAS  Google Scholar 

  28. Chauhan A, Sharma U, Jagannathan NR, Reeta KH, Gupta YK (2011) Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res 225(2):603–609. https://doi.org/10.1016/j.bbr.2011.08.035

    Article  PubMed  CAS  Google Scholar 

  29. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6(3):366–377. https://doi.org/10.4161/auto.6.3.11261

    Article  PubMed  CAS  Google Scholar 

  30. Chi OZ, Barsoum S, Vega-Cotto NM, Jacinto E, Liu X, Mellender SJ, Weiss HR (2016) Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia. Neuroscience 316:321–327. https://doi.org/10.1016/j.neuroscience.2015.12.045

    Article  PubMed  CAS  Google Scholar 

  31. Gao H, Ju F, Ti R, Zhang Y, Zhang S (2022) Differential regulation of microglial activation in response to different degree of ischemia. Front Immunol 13:792638. https://doi.org/10.3389/fimmu.2022.792638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Koellhoffer EC, McCullough LD (2013) The effects of estrogen in ischemic stroke. Transl Stroke Res 4(4):390–401. https://doi.org/10.1007/s12975-012-0230-5

    Article  PubMed  CAS  Google Scholar 

  33. Alkayed NJ, Harukuni I, Kimes AS, London ED, Traystman RJ, Hurn PD (1998) Gender-linked brain injury in experimental stroke. Stroke 29(1):159–165. https://doi.org/10.1161/01.str.29.1.159. (discussion 166)

    Article  PubMed  CAS  Google Scholar 

  34. Zhu L, Wang L, Ju F, Ran Y, Wang C, Zhang S (2017) Transient global cerebral ischemia induces rapid and sustained reorganization of synaptic structures. J Cereb Blood Flow Metab 37(8):2756–2767. https://doi.org/10.1177/0271678X16674736

    Article  PubMed  Google Scholar 

  35. Ju F, Ran Y, Zhu L, Cheng X, Gao H, Xi X, Yang Z, Zhang S (2018) Increased BBB permeability enhances activation of microglia and exacerbates loss of dendritic spines after transient global cerebral ischemia. Front Cell Neurosci 12:236. https://doi.org/10.3389/fncel.2018.00236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Murphy TH, Li P, Betts K, Liu R (2008) Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci 28(7):1756–1772. https://doi.org/10.1523/JNEUROSCI.5128-07.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tkatchenko TV, Tkatchenko AV (2010) Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice. J Neurosci Methods 193(1):67–71. https://doi.org/10.1016/j.jneumeth.2010.07.036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Koizumi R, Sasaki N, Nakamura Y, Suzuki N, Sawai T, Yamauchi K (2014) Rapamycin attenuates pulmonary allergic vasculitis in murine model by reducing TGF-beta production in the lung. Allergol Int 63(3):457–466. https://doi.org/10.2332/allergolint.13-OA-0679

    Article  PubMed  CAS  Google Scholar 

  39. Espinosa-Garcia C, Sayeed I, Yousuf S, Atif F, Sergeeva EG, Neigh GN, Stein DG (2017) Stress primes microglial polarization after global ischemia: therapeutic potential of progesterone. Brain Behav Immun 66:177–192. https://doi.org/10.1016/j.bbi.2017.06.012

    Article  PubMed  CAS  Google Scholar 

  40. Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y, Mori M (2004) Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 11(4):403–415. https://doi.org/10.1038/sj.cdd.4401365

    Article  PubMed  CAS  Google Scholar 

  41. Zhu L, Wang L, Ju F, Khan A, Cheng X, Zhang S (2017) Reversible recovery of neuronal structures depends on the degree of neuronal damage after global cerebral ischemia in mice. Exp Neurol 289:1–8. https://doi.org/10.1016/j.expneurol.2016.12.002

    Article  PubMed  Google Scholar 

  42. Morrison HW, Filosa JA (2013) A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 10:4. https://doi.org/10.1186/1742-2094-10-4

  43. Li T, Zhao J, Xie W, Yuan W, Guo J, Pang S, Gan WB, Gomez-Nicola D et al (2021) Specific depletion of resident microglia in the early stage of stroke reduces cerebral ischemic damage. J Neuroinflammation 18(1):81. https://doi.org/10.1186/s12974-021-02127-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gaire BP, Lee CH, Sapkota A, Lee SY, Chun J, Cho HJ, Nam TG, Choi JW (2018) Identification of sphingosine 1-phosphate receptor subtype 1 (S1P1) as a pathogenic factor in transient focal cerebral ischemia. Mol Neurobiol 55(3):2320–2332. https://doi.org/10.1007/s12035-017-0468-8

    Article  PubMed  CAS  Google Scholar 

  45. Gaire BP, Song MR, Choi JW (2018) Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. J Neuroinflammation 15(1):284. https://doi.org/10.1186/s12974-018-1323-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhang JC, Xu H, Yuan Y, Chen JY, Zhang YJ, Lin Y, Yuan SY (2017) Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice. Mol Neurobiol 54(5):3652–3664. https://doi.org/10.1007/s12035-016-9924-0

    Article  PubMed  CAS  Google Scholar 

  47. Dordoe C, Wang X, Lin P, Wang Z, Hu J, Wang D, Fang Y, Liang F et al (2022) Non-mitogenic fibroblast growth factor 1 protects against ischemic stroke by regulating microglia/macrophage polarization through Nrf2 and NF-kappaB pathways. Neuropharmacology 212:109064. https://doi.org/10.1016/j.neuropharm.2022.109064

  48. Wang J, Li G, Deng L, Mamtilahun M, Jiang L, Qiu W, Zheng H, Sun J et al (2021) Transcranial focused ultrasound stimulation improves neurorehabilitation after middle cerebral artery occlusion in mice. Aging Dis 12(1):50–60. https://doi.org/10.14336/AD.2020.0623

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070. https://doi.org/10.1161/STROKEAHA.112.659656

    Article  PubMed  CAS  Google Scholar 

  50. Im JH, Yeo IJ, Park PH, Choi DY, Han SB, Yun J, Hong JT (2020) Deletion of Chitinase-3-like 1 accelerates stroke development through enhancement of neuroinflammation by STAT6-dependent M2 microglial inactivation in Chitinase-3-like 1 knockout mice. Exp Neurol 323:113082. https://doi.org/10.1016/j.expneurol.2019.113082

    Article  PubMed  CAS  Google Scholar 

  51. Zeng H, Liu N, Yang YY, Xing HY, Liu XX, Li F, La GY, Huang MJ et al (2019) Lentivirus-mediated downregulation of alpha-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury. J Neuroinflammation 16(1):283. https://doi.org/10.1186/s12974-019-1658-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Takano T, Oberheim N, Cotrina ML, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40(3):S8-12. https://doi.org/10.1161/STROKEAHA.108.533166

    Article  PubMed  Google Scholar 

  53. Huuskonen MT, Tuo QZ, Loppi S, Dhungana H, Korhonen P, McInnes LE, Donnelly PS, Grubman A et al (2017) The copper bis(thiosemicarbazone) complex Cu(II)(atsm) is protective against cerebral ischemia through modulation of the inflammatory milieu. Neurotherapeutics 14(2):519–532. https://doi.org/10.1007/s13311-016-0504-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Unteroberdorster M, Herring A, Bendix I, Luckemann L, Petschulat J, Sure U, Keyvani K, Hetze S et al (2021) Neurobehavioral effects in rats with experimentally induced glioblastoma after treatment with the mTOR-inhibitor rapamycin. Neuropharmacology 184:108424. https://doi.org/10.1016/j.neuropharm.2020.108424

    Article  PubMed  CAS  Google Scholar 

  55. Blagosklonny MV (2019) Rapamycin for longevity: opinion article. Aging-Us 11(19):8048–8067. https://doi.org/10.18632/aging.102355

    Article  CAS  Google Scholar 

  56. Wu M, Zhang H, Kai J, Zhu F, Dong J, Xu Z, Wong M, Zeng LH (2018) Rapamycin prevents cerebral stroke by modulating apoptosis and autophagy in penumbra in rats. Ann Clin Transl Neurol 5(2):138–146. https://doi.org/10.1002/acn3.507

    Article  PubMed  CAS  Google Scholar 

  57. Beard DJ, Li Z, Schneider AM, Couch Y, Cipolla MJ, Buchan AM (2020) Rapamycin induces an eNOS (endothelial nitric oxide synthase) dependent increase in brain collateral perfusion in Wistar and spontaneously hypertensive rats. Stroke 51(9):2834–2843. https://doi.org/10.1161/STROKEAHA.120.029781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yang X, Hei C, Liu P, Song Y, Thomas T, Tshimanga S, Wang F, Niu J et al (2015) Inhibition of mTOR pathway by rapamycin reduces brain damage in rats subjected to transient forebrain ischemia. Int J Biol Sci 11(12):1424–1435. https://doi.org/10.7150/ijbs.12930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299(5608):896–899. https://doi.org/10.1126/science.1079368

    Article  PubMed  CAS  Google Scholar 

  60. Hetz C, Vitte PA, Bombrun A, Rostovtseva TK, Montessuit S, Hiver A, Schwarz MK, Church DJ et al (2005) Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem 280(52):42960–42970. https://doi.org/10.1074/jbc.M505843200

    Article  PubMed  CAS  Google Scholar 

  61. Serra PA, Sciola L, Delogu MR, Spano A, Monaco G, Miele E, Rocchitta G, Miele M et al (2002) The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induces apoptosis in mouse nigrostriatal glia. Relevance to nigral neuronal death and striatal neurochemical changes. J Biol Chem 277(37):34451–34461. https://doi.org/10.1074/jbc.M202099200

    Article  PubMed  CAS  Google Scholar 

  62. Petito CK, Pulsinelli WA (1984) Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J Neuropathol Exp Neurol 43(2):141–153. https://doi.org/10.1097/00005072-198403000-00004

    Article  PubMed  CAS  Google Scholar 

  63. Yang Z, Zhong L, Zhong S, Xian R, Yuan B (2015) Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model. Exp Mol Pathol 98(2):219–224. https://doi.org/10.1016/j.yexmp.2015.02.003

    Article  PubMed  CAS  Google Scholar 

  64. Xie R, Wang P, Cheng M, Sapolsky R, Ji X, Zhao H (2014) Mammalian target of rapamycin cell signaling pathway contributes to the protective effects of ischemic postconditioning against stroke. Stroke 45(9):2769–2776. https://doi.org/10.1161/STROKEAHA.114.005406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Beard DJ, Hadley G, Thurley N, Howells DW, Sutherland BA, Buchan AM (2019) The effect of rapamycin treatment on cerebral ischemia: a systematic review and meta-analysis of animal model studies. Int J Stroke 14(2):137–145. https://doi.org/10.1177/1747493018816503

    Article  PubMed  Google Scholar 

  66. Liu Y, Yang F, Zou S, Qu L (2018) Rapamycin: a bacteria-derived immunosuppressant that has anti-atherosclerotic effects and its clinical application. Front Pharmacol 9:1520. https://doi.org/10.3389/fphar.2018.01520

    Article  PubMed  CAS  Google Scholar 

  67. Mercalli A, Calavita I, Dugnani E, Citro A, Cantarelli E, Nano R, Melzi R, Maffi P et al (2013) Rapamycin unbalances the polarization of human macrophages to M1. Immunology 140(2):179–190. https://doi.org/10.1111/imm.12126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chen W, Ma T, Shen XN, Xia XF, Xu GD, Bai XL, Liang TB (2012) Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Res 72(6):1363–1372. https://doi.org/10.1158/0008-5472.CAN-11-2684

    Article  PubMed  CAS  Google Scholar 

  69. Liu Z, Ran Y, Huang S, Wen S, Zhang W, Liu X, Ji Z, Geng X et al (2017) Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front Aging Neurosci 9:233. https://doi.org/10.3389/fnagi.2017.00233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. He Y, Ma X, Li D, Hao J (2017) Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-kappaB p65 signaling. J Cereb Blood Flow Metab 37(8):2938–2951. https://doi.org/10.1177/0271678X16679671

    Article  PubMed  CAS  Google Scholar 

  71. Wang R, Zhang S, Yang Z, Zheng Y, Yan F, Tao Z, Fan J, Zhao H et al (2021) Mutant erythropoietin enhances white matter repair via the JAK2/STAT3 and C/EBPbeta pathway in middle-aged mice following cerebral ischemia and reperfusion. Exp Neurol 337:113553. https://doi.org/10.1016/j.expneurol.2020.113553

    Article  PubMed  CAS  Google Scholar 

  72. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Jia X, Gao Z, Hu H (2021) Microglia in depression: current perspectives. Sci China Life Sci 64(6):911–925. https://doi.org/10.1007/s11427-020-1815-6

    Article  PubMed  CAS  Google Scholar 

  74. Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S (2013) Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136(Pt 12):3578–3588. https://doi.org/10.1093/brain/awt287

    Article  PubMed  Google Scholar 

  75. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, Tipton T, Chapman MA et al (2017) Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18(2):391–405. https://doi.org/10.1016/j.celrep.2016.12.041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rao Y, Du S, Yang B, Wang Y, Li Y, Li R, Zhou T, Du X et al (2021) NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming. Neuron 109(24):4094-4108.e4095. https://doi.org/10.1016/j.neuron.2021.11.008

    Article  PubMed  CAS  Google Scholar 

  77. Cao Y, Li Y, He C, Yan F, Li JR, Xu HZ, Zhuang JF, Zhou H et al (2021) Selective ferroptosis inhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neurosci Bull 37(4):535–549. https://doi.org/10.1007/s12264-020-00620-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Pisani A, Bonsi P, Calabresi P (2004) Calcium signaling and neuronal vulnerability to ischemia in the striatum. Cell Calcium 36(3–4):277–284. https://doi.org/10.1016/j.ceca.2004.02.010

    Article  PubMed  CAS  Google Scholar 

  79. Calabresi PCD, Bernardi G (2000) Cellular factors controlling neuronal vulnerability in the brain. Neurology 55(9):1249–1255. https://doi.org/10.1212/wnl.55.9.1249

    Article  PubMed  CAS  Google Scholar 

  80. Calabresi PPA, Mercuri NB, Bernardi G (1995) On the mechanisms underlying hypoxia-induced membrane depolarization in striatal neurons. Brain 118(4):1027–1038. https://doi.org/10.1093/brain/118.4.1027

    Article  PubMed  Google Scholar 

  81. Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, Ji X, Leak RK et al (2016) Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke 47(2):498–504. https://doi.org/10.1161/STROKEAHA.115.012079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sun H, He X, Tao X, Hou T, Chen M, He M, Liao H (2020) The CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke. J Neuroinflammation 17(1):171. https://doi.org/10.1186/s12974-020-01845-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. He T, Li W, Song Y, Li Z, Tang Y, Zhang Z, Yang GY (2020) Sestrin2 regulates microglia polarization through mTOR-mediated autophagic flux to attenuate inflammation during experimental brain ischemia. J Neuroinflammation 17(1):329. https://doi.org/10.1186/s12974-020-01987-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Xu X, Gao W, Li L, Hao J, Yang B, Wang T, Li L, Bai X et al (2021) Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J Neuroinflammation 18(1):119. https://doi.org/10.1186/s12974-021-02174-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zang J, Wu Y, Su X, Zhang T, Tang X, Ma D, Li Y, Liu Y et al (2020) Inhibition of PDE1-B by vinpocetine regulates microglial exosomes and polarization through enhancing autophagic flux for neuroprotection against ischemic stroke. Front Cell Dev Biol 8:616590. https://doi.org/10.3389/fcell.2020.616590

    Article  PubMed  Google Scholar 

  86. Jin MM, Wang F, Qi D, Liu WW, Gu C, Mao CJ, Yang YP, Zhao Z et al (2018) A critical role of autophagy in regulating microglia polarization in neurodegeneration. Front Aging Neurosci 10:378. https://doi.org/10.3389/fnagi.2018.00378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. You WC, Wang Z, Li HY, Shen HT, Xu X, Jia GL, Chen G (2016) Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats. J Neurol Sci 367:224–231. https://doi.org/10.1016/j.jns.2016.06.021

    Article  PubMed  CAS  Google Scholar 

  88. Li D, Wang C, Yao Y, Chen L, Liu G, Zhang R, Liu Q, Shi FD et al (2016) mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. FASEB J 30(10):3388–3399. https://doi.org/10.1096/fj.201600495R

    Article  PubMed  CAS  Google Scholar 

  89. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘on’ and ‘off’ signals control microglia. Trends Neurosci 30(11):596–602. https://doi.org/10.1016/j.tins.2007.08.007

    Article  PubMed  CAS  Google Scholar 

  90. Wilton DK, Dissing-Olesen L, Stevens B (2019) Neuron-glia signaling in synapse elimination. Annu Rev Neurosci 42:107–127. https://doi.org/10.1146/annurev-neuro-070918-050306

    Article  PubMed  CAS  Google Scholar 

  91. Costello DA, Lyons A, Denieffe S, Browne TC, Cox FF, Lynch MA (2011) Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for toll-like receptor activation. J Biol Chem 286(40):34722–34732. https://doi.org/10.1074/jbc.M111.280826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771. https://doi.org/10.1126/science.290.5497.1768

    Article  PubMed  CAS  Google Scholar 

  93. Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9(1):42. https://doi.org/10.1186/s40035-020-00221-2

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ (2020) Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol 11:1024. https://doi.org/10.3389/fimmu.2020.01024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Vainchtein ID, Molofsky AV (2020) Astrocytes and microglia: in sickness and in health. Trends Neurosci 43(3):144–154. https://doi.org/10.1016/j.tins.2020.01.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 109(4):E197-205. https://doi.org/10.1073/pnas.1111098109

    Article  PubMed  Google Scholar 

  97. Damisah EC, Hill RA, Rai A, Chen F, Rothlin CV, Ghosh S, Grutzendler J (2020) Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci Adv 6(26):eaba3239. https://doi.org/10.1126/sciadv.aba3239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Core Facility of School of Life Sciences, Lanzhou University and Cuiying Biomedical Research Center, Lanzhou University Second Hospital for excellent technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China [grant number 81771324], and Fundamental Research Funds for the Central Universities [grant number lzujbky-2022–38].

Author information

Authors and Affiliations

Authors

Contributions

In this study, YZ, TL and SXZ designed the research plan. YZ, DHL, and HG performed the experiment. YZ analyzed the data. YZ, HG, HYZ, SXZ, and TL wrote the manuscript. All authors agreed with the submitted version of this manuscript.

Corresponding authors

Correspondence to Shengxiang Zhang or Ting Li.

Ethics declarations

Ethics Approval

All experimental procedures and protocols in the study were performed in line with the regulations of the Ethics Committee of Lanzhou University and National Research Council’s Guide for the Care and Use of Laboratory Animals.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the submitted manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 736 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, D., Gao, H. et al. Rapamycin Alleviates Neuronal Injury and Modulates Microglial Activation After Cerebral Ischemia. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-023-03904-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03904-9

Keywords

Navigation