Skip to main content

Advertisement

Log in

Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy’s success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

BDNF:

Brain-derived neurotrophic factor

GDNF:

Glial-derived neurotrophic factor

IL-1:

Interleukins-1

IL-6:

Interleukins-6

TNF-α:

Tumor necrosis factors-α

NF-κB:

Nuclear factor kappa-B

TLR-4:

Toll-like receptor4

DA:

Dopamine

DAMPs:

Damage-associated molecular patterns

NMDA:

N-methyl-d-aspartate

NMDAR:

N-methyl-d-aspartate receptor

MCP-1:

Monocyte chemotactic protein-1

GDF-15:

Growth differentiation factor-15

5-HT:

5-Hydroxytryptamine

GABA:

Gamma-aminobutyric acid

mGIN:

GABAergic interneurons

AD:

Alzheimer’s disease

PD :

Parkinson’s disease

HD:

Huntington’s disease

MRI:

Magnetic resonance imaging

MDD:

Major depressive disorder

ECT:

Electroconvulsive therapy

SVZ:

Subventricular zone

SGZ:

Subgranular zone

NTs:

Neurotrophins

FSLs:

Flinder sensitive line rats

ALS:

Amyotrophic lateral sclerosis

TLE:

Temporal lobe epilepsy

MS:

Multiple sclerosis

TLE:

Temporal lobe epilepsy

CNTF:

Ciliary neurotrophic factor

FGF-2:

Fibroblast growth factor 2

TrKB:

Tyrosine kinase receptor B

Jmjd3:

Jumonji domain-containing protein 3

NP:

Neuropathic pain

BIS:

Brain ischemic stroke

MSNs:

Medium spiny neurons

MNs:

Motor neurons

NTFs:

Neurotrophic factors

BBB:

Blood-brain barrier

VEGF:

Vascular endothelial growth factor

ESCs:

Embryonic stem cells

MSCs:

Mesenchymal stem cells

NSCs:

Brain-derived neural stem cells

iPSCs:

Induced pluripotent stem cells

hMSCs:

Human mesenchymal stem cells

hESC:

Human embryonic stem cells

ADSCs:

Adipose-derived mesenchymal stem cells

hUC‐MSCs:

Human umbilical cord‐derived mesenchymal stem cells

BMSCs:

Bone marrow–derived mesenchymal stem cells

References

  1. WHO Depression 2021. [cited 10 January 2022]. Available from: https://www.who.int/newsroom/fact-sheets/detail/depression

  2. Patten SB, Kennedy SH, Lam RW, O’Donovan C, Filteau MJ, Parikh SV, Ravindran AV, Canadian Network for Mood and Anxiety Treatments (CANMAT) (2009) Canadian Network for Mood and Anxiety Treatments (CANMAT) clinical guidelines for the management of major depressive disorder in adults. I. Classification, burden and principles of management. J Affect Disord 117(Suppl 1):S5-14. https://doi.org/10.1016/j.jad.2009.06.044

    Article  PubMed  Google Scholar 

  3. DALYs GBD, Collaborators H (2016) Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1603–1658. https://doi.org/10.1016/S0140-6736(16)31460-X

    Article  Google Scholar 

  4. Diseases GBD, Injuries C (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396(10258):1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9

    Article  Google Scholar 

  5. Shadrina M, Bondarenko EA, Slominsky PA (2018) Genetics factors in major depression disease. Front Psychiatry 9:334. https://doi.org/10.3389/fpsyt.2018.00334

    Article  PubMed  PubMed Central  Google Scholar 

  6. Turecki G, Brent DA, Gunnell D, O’Connor RC, Oquendo MA, Pirkis J, Stanley BH (2019) Suicide and suicide risk. Nat Rev Dis Primers 5(1):74. https://doi.org/10.1038/s41572-019-0121-0

    Article  PubMed  Google Scholar 

  7. Dunn EC, Wang MJ, Perlis RH (2020) A summary of recent updates on the genetic determinants of depression. McIntyre RS:1–27

    Google Scholar 

  8. Health Quality O (2017) Psychotherapy for major depressive disorder and generalized anxiety disorder: a health technology assessment. Ont Health Technol Assess Ser 17(15):1–167

    Google Scholar 

  9. Copeland WE, Alaie I, Jonsson U, Shanahan L (2021) Associations of childhood and adolescent depression with adult psychiatric and functional outcomes. J Am Acad Child Adolesc Psychiatry 60(5):604–611. https://doi.org/10.1016/j.jaac.2020.07.895

    Article  PubMed  Google Scholar 

  10. Kalra KTTP (2014) Stem cell: basics, classification and applications. AJPCT 2:919–930

    Google Scholar 

  11. Li Z, Ruan M, Chen J, Fang Y (2021) Major depressive disorder: advances in neuroscience research and translational applications. Neurosci Bull 37(6):863–880. https://doi.org/10.1007/s12264-021-00638-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642. https://doi.org/10.1146/annurev.biochem.72.121801.161629

    Article  CAS  PubMed  Google Scholar 

  13. Phillips C (2017) Brain-derived neurotrophic factor, depression, and physical activity: making the neuroplastic connection. Neural Plast 2017:7260130. https://doi.org/10.1155/2017/7260130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joshi R, Salton SRJ (2022) Neurotrophin crosstalk in the etiology and treatment of neuropsychiatric and neurodegenerative disease. Front Mol Neurosci 15:932497. https://doi.org/10.3389/fnmol.2022.932497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Porter GA, O’Connor JC (2022) Brain-derived neurotrophic factor and inflammation in depression: pathogenic partners in crime? World J Psychiatry 12(1):77–97. https://doi.org/10.5498/wjp.v12.i1.77

    Article  PubMed  PubMed Central  Google Scholar 

  16. Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25(22):5455–5463. https://doi.org/10.1523/JNEUROSCI.5123-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gupta VK, You Y, Gupta VB, Klistorner A, Graham SL (2013) TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14(5):10122–10142. https://doi.org/10.3390/ijms140510122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rana T, Behl T, Sehgal A, Srivastava P, Bungau S (2021) Unfolding the role of BDNF as a biomarker for treatment of depression. J Mol Neurosci 71(10):2008–2021. https://doi.org/10.1007/s12031-020-01754-x

    Article  CAS  PubMed  Google Scholar 

  19. Carniel BP, da Rocha NS (2021) Brain-derived neurotrophic factor (BDNF) and inflammatory markers: perspectives for the management of depression. Prog Neuropsychopharmacol Biol Psychiatry 108:110151. https://doi.org/10.1016/j.pnpbp.2020.110151

    Article  CAS  PubMed  Google Scholar 

  20. Meshkat S, Alnefeesi Y, Jawad MY, Di Vincenzo JD, Rodrigues NB, Ceban F, Lui LMW, McIntyre RS et al (2022) Brain-derived neurotrophic factor (BDNF) as a biomarker of treatment response in patients with treatment resistant depression (TRD): a systematic review & meta-analysis. Psychiatry Res 317:114857. https://doi.org/10.1016/j.psychres.2022.114857

    Article  CAS  PubMed  Google Scholar 

  21. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37(12):1553–1561. https://doi.org/10.1016/s0028-3908(98)00141-5

    Article  CAS  PubMed  Google Scholar 

  22. Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328(3):261–264. https://doi.org/10.1016/s0304-3940(02)00529-3

    Article  CAS  PubMed  Google Scholar 

  23. Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73. https://doi.org/10.1186/s12916-016-0623-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abbott NJ (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 20(2):131–147. https://doi.org/10.1023/a:1007074420772

    Article  CAS  PubMed  Google Scholar 

  25. Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114. https://doi.org/10.1186/s12974-015-0332-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Majd M, Saunders EFH, Engeland CG (2020) Inflammation and the dimensions of depression: a review. Front Neuroendocrinol 56:100800. https://doi.org/10.1016/j.yfrne.2019.100800

    Article  PubMed  Google Scholar 

  27. Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, Ashe JM, Chavan SS et al (2018) Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci U S A 115(21):E4843–E4852. https://doi.org/10.1073/pnas.1719083115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Engblom D, Ek M, Saha S, Ericsson-Dahlstrand A, Jakobsson PJ, Blomqvist A (2002) Prostaglandins as inflammatory messengers across the blood-brain barrier. J Mol Med (Berl) 80(1):5–15. https://doi.org/10.1007/s00109-001-0289-z

    Article  CAS  PubMed  Google Scholar 

  29. Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130(2):226–238. https://doi.org/10.1016/j.pharmthera.2011.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang HT, Huang FL, Hu ZL, Zhang WJ, Qiao XQ, Huang YQ, Dai RP, Li F et al (2017) Early-life social isolation-induced depressive-like behavior in rats results in microglial activation and neuronal histone methylation that are mitigated by minocycline. Neurotox Res 31(4):505–520. https://doi.org/10.1007/s12640-016-9696-3

    Article  CAS  PubMed  Google Scholar 

  31. Catale C, Gironda S, Lo Iacono L, Carola V (2020) Microglial function in the effects of early-life stress on brain and behavioral development. J Clin Med 9(2). https://doi.org/10.3390/jcm9020468

  32. Chan KL, Cathomas F, Russo SJ (2019) Central and peripheral inflammation link metabolic syndrome and major depressive disorder. Physiology (Bethesda) 34(2):123–133. https://doi.org/10.1152/physiol.00047.2018

    Article  CAS  PubMed  Google Scholar 

  33. Black C, Miller BJ (2015) Meta-analysis of cytokines and chemokines in suicidality: distinguishing suicidal versus nonsuicidal patients. Biol Psychiatry 78(1):28–37. https://doi.org/10.1016/j.biopsych.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  34. You Z, Luo C, Zhang W, Chen Y, He J, Zhao Q, Zuo R, Wu Y (2011) Pro- and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 225(1):135–141. https://doi.org/10.1016/j.bbr.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  35. Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D, Rebusi N, Heshmati M et al (2014) Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci U S A 111(45):16136–16141. https://doi.org/10.1073/pnas.1415191111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Connor JC, Lawson MA, Andre C, Briley EM, Szegedi SS, Lestage J, Castanon N, Herkenham M et al (2009) Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behavior. J Immunol 182(5):3202–3212. https://doi.org/10.4049/jimmunol.0802722

    Article  CAS  PubMed  Google Scholar 

  37. O’Connor JC, Andre C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW et al (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci 29(13):4200–4209. https://doi.org/10.1523/JNEUROSCI.5032-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang Y, Zou D, Li Y, Gu S, Dong J, Ma X, Xu S, Wang F et al (2022) Monoamine neurotransmitters control basic emotions and affect major depressive disorders. Pharmaceuticals (Basel) 15(10). https://doi.org/10.3390/ph15101203

  39. Wang Q, Jie W, Liu JH, Yang JM, Gao TM (2017) An astroglial basis of major depressive disorder? An overview Glia 65(8):1227–1250. https://doi.org/10.1002/glia.23143

    Article  PubMed  Google Scholar 

  40. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, Hu H (2018) Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554(7692):317–322. https://doi.org/10.1038/nature25509

    Article  CAS  PubMed  Google Scholar 

  41. Dienstbier RA (1989) Arousal and physiological toughness: implications for mental and physical health. Psychol Rev 96(1):84–100. https://doi.org/10.1037/0033-295x.96.1.84

    Article  CAS  PubMed  Google Scholar 

  42. Gu S, Wang W, Wang F, Huang JH (2016) Neuromodulator and emotion biomarker for stress induced mental disorders. Neural Plast 2016:2609128. https://doi.org/10.1155/2016/2609128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lucas-Osma AM, Li Y, Murray K, Lin S, Black S, Stephens MJ, Ahn AH, Heckman CJ et al (2019) 5-HT(1D) receptors inhibit the monosynaptic stretch reflex by modulating C-fiber activity. J Neurophysiol 121(5):1591–1608. https://doi.org/10.1152/jn.00805.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Azizi H, Hwang J, Suen V, Kang NZ, Somvanshi R, Tadavarty R, Kumar U, Sastry BR (2017) Sleep deprivation induces changes in 5-HT actions and 5-HT(1A) receptor expression in the rat hippocampus. Neurosci Lett 655:151–155. https://doi.org/10.1016/j.neulet.2017.06.053

    Article  CAS  PubMed  Google Scholar 

  45. Gul S, Saleem D, Haleem MA, Haleem DJ (2019) Inhibition of hormonal and behavioral effects of stress by tryptophan in rats. Nutr Neurosci 22(6):409–417. https://doi.org/10.1080/1028415X.2017.1395551

    Article  CAS  PubMed  Google Scholar 

  46. Gul S, Khan A, Raza A, Khan I, Ehtisham S (2020) Association of XPD Lys751Gln gene polymorphism with susceptibility and clinical outcome of colorectal cancer in Pakistani population: a case-control pharmacogenetic study. Genes Genomics 42(12):1389–1398. https://doi.org/10.1007/s13258-020-01004-9

    Article  CAS  PubMed  Google Scholar 

  47. Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8(1). https://doi.org/10.3390/nu8010056

  48. Shao X, Zhu G (2020) Associations among monoamine neurotransmitter pathways, personality traits, and major depressive disorder. Front Psychiatry 11:381. https://doi.org/10.3389/fpsyt.2020.00381

    Article  PubMed  PubMed Central  Google Scholar 

  49. Barton DA, Esler MD, Dawood T, Lambert EA, Haikerwal D, Brenchley C, Socratous F, Hastings J et al (2008) Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Arch Gen Psychiatry 65(1):38–46. https://doi.org/10.1001/archgenpsychiatry.2007.11

    Article  CAS  PubMed  Google Scholar 

  50. Marshe VS, Maciukiewicz M, Rej S, Tiwari AK, Sibille E, Blumberger DM, Karp JF, Lenze EJ et al (2017) Norepinephrine transporter gene variants and remission from depression with venlafaxine treatment in older adults. Am J Psychiatry 174(5):468–475. https://doi.org/10.1176/appi.ajp.2016.16050617

    Article  PubMed  Google Scholar 

  51. Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20(12):1036–1046. https://doi.org/10.1093/ijnp/pyx056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Siafaka PI, Okur ME, Erim PD, Caglar ES, Ozgenc E, Gundogdu E, Koprulu REP, Karantas ID et al (2022) Protein and gene delivery systems for neurodegenerative disorders: where do we stand today? Pharmaceutics 14(11). https://doi.org/10.3390/pharmaceutics14112425

  53. Sachdeva B, Sachdeva P, Ghosh S, Ahmad F, Sinha JK (2023) Ketamine as a therapeutic agent in major depressive disorder and posttraumatic stress disorder: potential medicinal and deleterious effects. Ibrain 9(1):90–101. https://doi.org/10.1002/ibra.12094

    Article  PubMed  PubMed Central  Google Scholar 

  54. Madar IH, Sultan G, Tayubi IA, Hasan AN, Pahi B, Rai A, Sivanandan PK, Loganathan T et al (2021) Identification of marker genes in Alzheimer’s disease using a machine-learning model. Bioinformation 17(2):348–355. https://doi.org/10.6026/97320630017348

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen D, Zhang T, Lee TH (2020) Cellular mechanisms of melatonin: insight from neurodegenerative diseases. Biomolecules 10(8). https://doi.org/10.3390/biom10081158

  56. van Eijndhoven P, van Wingen G, Katzenbauer M, Groen W, Tepest R, Fernandez G, Buitelaar J, Tendolkar I (2013) Paralimbic cortical thickness in first-episode depression: evidence for trait-related differences in mood regulation. Am J Psychiatry 170(12):1477–1486. https://doi.org/10.1176/appi.ajp.2013.12121504

    Article  PubMed  Google Scholar 

  57. Geerlings MI, Gerritsen L (2017) Late-life depression, hippocampal volumes, and hypothalamic-pituitary-adrenal axis regulation: a systematic review and meta-analysis. Biol Psychiatry 82(5):339–350. https://doi.org/10.1016/j.biopsych.2016.12.032

    Article  CAS  PubMed  Google Scholar 

  58. Liang S, Wang Q, Kong X, Deng W, Yang X, Li X, Zhang Z, Zhang J et al (2019) White matter abnormalities in major depression biotypes identified by diffusion tensor imaging. Neurosci Bull 35(5):867–876. https://doi.org/10.1007/s12264-019-00381-w

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen G, Guo Y, Zhu H, Kuang W, Bi F, Ai H, Gu Z, Huang X et al (2017) Intrinsic disruption of white matter microarchitecture in first-episode, drug-naive major depressive disorder: a voxel-based meta-analysis of diffusion tensor imaging. Prog Neuropsychopharmacol Biol Psychiatry 76:179–187. https://doi.org/10.1016/j.pnpbp.2017.03.011

    Article  PubMed  Google Scholar 

  60. Maller JJ, Broadhouse K, Rush AJ, Gordon E, Koslow S, Grieve SM (2018) Increased hippocampal tail volume predicts depression status and remission to anti-depressant medications in major depression. Mol Psychiatry 23(8):1737–1744. https://doi.org/10.1038/mp.2017.224

    Article  CAS  PubMed  Google Scholar 

  61. Gryglewski G, Baldinger-Melich P, Seiger R, Godbersen GM, Michenthaler P, Klobl M, Spurny B, Kautzky A et al (2019) Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: longitudinal analysis. Br J Psychiatry 214(3):159–167. https://doi.org/10.1192/bjp.2018.224

    Article  PubMed  PubMed Central  Google Scholar 

  62. Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38(6):1068–1077. https://doi.org/10.1038/npp.2013.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ait Tayeb AEK, Poinsignon V, Chappell K, Bouligand J, Becquemont L, Verstuyft C (2023) Major depressive disorder and oxidative stress: a review of peripheral and genetic biomarkers according to clinical characteristics and disease stages. Antioxidants (Basel) 12(4). https://doi.org/10.3390/antiox12040942

  64. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24(8). https://doi.org/10.3390/molecules24081583

  65. Battaglini M, Marino A, Carmignani A, Tapeinos C, Cauda V, Ancona A, Garino N, Vighetto V et al (2020) Polydopamine nanoparticles as an organic and biodegradable multitasking tool for neuroprotection and remote neuronal stimulation. ACS Appl Mater Interfaces 12(32):35782–35798. https://doi.org/10.1021/acsami.0c05497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Connor B, Dragunow M (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Brain Res Rev 27(1):1–39. https://doi.org/10.1016/s0165-0173(98)00004-6

    Article  CAS  PubMed  Google Scholar 

  67. Sullivan AM, O’Keeffe GW (2016) Neurotrophic factor therapy for Parkinson’s disease: past, present and future. Neural Regen Res 11(2):205–207. https://doi.org/10.4103/1673-5374.177710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim HS, Jeon I, Noh JE, Lee H, Hong KS, Lee N, Pei Z, Song J (2020) Intracerebral transplantation of BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) promotes migration, differentiation and functional recovery in a rodent model of Huntington’s disease. Exp Neurobiol 29(2):130–137. https://doi.org/10.5607/en20011

    Article  PubMed  PubMed Central  Google Scholar 

  69. Arosio B, Guerini FR, Voshaar RCO, Aprahamian I (2021) Blood brain-derived neurotrophic factor (BDNF) and major depression: do we have a translational perspective? Front Behav Neurosci 15:626906. https://doi.org/10.3389/fnbeh.2021.626906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Soler CT, Kanders SH, Olofsdotter S, Vadlin S, Aslund C, Nilsson KW (2022) Exploration of the moderating effects of physical activity and early life stress on the relation between brain-derived neurotrophic factor (BDNF) rs6265 variants and depressive symptoms among adolescents. Genes (Basel) 13(7). https://doi.org/10.3390/genes13071236

  71. Liu P, Li H, Wang Y, Su X, Li Y, Yan M, Ma L, Che H (2020) Harmine ameliorates cognitive impairment by inhibiting NLRP3 inflammasome activation and enhancing the BDNF/TrkB signaling pathway in STZ-induced diabetic rats. Front Pharmacol 11:535. https://doi.org/10.3389/fphar.2020.00535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu AG, Zhou XG, Qiao G, Yu L, Tang Y, Yan L, Qiu WQ, Pan R et al (2021) Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Res Rev 65:101202. https://doi.org/10.1016/j.arr.2020.101202

    Article  CAS  PubMed  Google Scholar 

  73. Qiu WQ, Ai W, Zhu FD, Zhang Y, Guo MS, Law BY, Wu JM, Wong VK et al (2022) Polygala saponins inhibit NLRP3 inflammasome-mediated neuroinflammation via SHP-2-Mediated mitophagy. Free Radic Biol Med 179:76–94. https://doi.org/10.1016/j.freeradbiomed.2021.12.263

    Article  CAS  PubMed  Google Scholar 

  74. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH (2004) Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 24(37):7999–8008. https://doi.org/10.1523/JNEUROSCI.2675-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khandaker GM, Stochl J, Zammit S, Goodyer I, Lewis G, Jones PB (2018) Childhood inflammatory markers and intelligence as predictors of subsequent persistent depressive symptoms: a longitudinal cohort study. Psychol Med 48(9):1514–1522. https://doi.org/10.1017/S0033291717003038

    Article  CAS  PubMed  Google Scholar 

  76. Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, Semwal P, Wilairatana P et al (2022) Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases. Molecules 27(10). https://doi.org/10.3390/molecules27103194

  77. Ottoboni L, von Wunster B, Martino G (2020) Therapeutic plasticity of neural stem cells. Front Neurol 11:148. https://doi.org/10.3389/fneur.2020.00148

    Article  PubMed  PubMed Central  Google Scholar 

  78. Peretto P, Merighi A, Fasolo A, Bonfanti L (1999) The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull 49(4):221–243. https://doi.org/10.1016/s0361-9230(99)00037-4

    Article  CAS  PubMed  Google Scholar 

  79. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335. https://doi.org/10.1002/cne.901240303

    Article  CAS  PubMed  Google Scholar 

  80. Nitsche MA, Muller-Dahlhaus F, Paulus W, Ziemann U (2012) The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J Physiol 590(19):4641–4662. https://doi.org/10.1113/jphysiol.2012.232975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Davis CD, Sanberg PR (2006) Cell therapy, stem cells and brain repair (contemporary neuroscience). Humana Press-Totowa, New Jersey

    Google Scholar 

  82. Batista CE, Mariano ED, Marie SK, Teixeira MJ, Morgalla M, Tatagiba M, Li J, Lepski G (2014) Stem cells in neurology–current perspectives. Arq Neuropsiquiatr 72(6):457–465. https://doi.org/10.1590/0004-282x20140045

    Article  PubMed  Google Scholar 

  83. Curtis MA, Low VF, Faull RL (2012) Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 72(7):990–1005. https://doi.org/10.1002/dneu.22028

    Article  PubMed  Google Scholar 

  84. Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M (2004) Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci 24(3):628–633. https://doi.org/10.1523/JNEUROSCI.3440-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hodgson RA, Ji Z, Standish S, Boyd-Hodgson TE, Henderson AK, Racine RJ (2005) Training-induced and electrically induced potentiation in the neocortex. Neurobiol Learn Mem 83(1):22–32. https://doi.org/10.1016/j.nlm.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  86. Licht T, Kreisel T, Biala Y, Mohan S, Yaari Y, Anisimov A, Alitalo K, Keshet E (2020) Age-dependent remarkable regenerative potential of the dentate gyrus provided by intrinsic stem cells. J Neurosci 40(5):974–995. https://doi.org/10.1523/JNEUROSCI.1010-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dihne M, Hartung HP, Seitz RJ (2011) Restoring neuronal function after stroke by cell replacement: anatomic and functional considerations. Stroke 42(8):2342–2350. https://doi.org/10.1161/STROKEAHA.111.613422

    Article  PubMed  Google Scholar 

  88. Merzenich MM, Van Vleet TM, Nahum M (2014) Brain plasticity-based therapeutics. Front Hum Neurosci 8:385. https://doi.org/10.3389/fnhum.2014.00385

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263(5153):1618–1623. https://doi.org/10.1126/science.7907431

    Article  CAS  PubMed  Google Scholar 

  90. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6):1137–1145. https://doi.org/10.1016/s0896-6273(00)80140-3

    Article  CAS  PubMed  Google Scholar 

  91. Baker-Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, Johnson RA, Watters JJ et al (2004) BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 7(1):48–55. https://doi.org/10.1038/nn1166

    Article  CAS  PubMed  Google Scholar 

  92. Levine ES, Crozier RA, Black IB, Plummer MR (1998) Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc Natl Acad Sci U S A 95(17):10235–10239. https://doi.org/10.1073/pnas.95.17.10235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Heldt SA, Stanek L, Chhatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12(7):656–670. https://doi.org/10.1038/sj.mp.4001957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gray J, Yeo GS, Cox JJ, Morton J, Adlam AL, Keogh JM, Yanovski JA, El Gharbawy A et al (2006) Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55(12):3366–3371. https://doi.org/10.2337/db06-0550

    Article  CAS  PubMed  Google Scholar 

  95. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63(7):642–649. https://doi.org/10.1016/j.biopsych.2007.09.019

    Article  CAS  PubMed  Google Scholar 

  96. Bjorkholm C, Monteggia LM (2016) BDNF - a key transducer of antidepressant effects. Neuropharmacology 102:72–79. https://doi.org/10.1016/j.neuropharm.2015.10.034

    Article  CAS  PubMed  Google Scholar 

  97. Allen AP, Naughton M, Dowling J, Walsh A, Ismail F, Shorten G, Scott L, McLoughlin DM et al (2015) Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: a comparison of ketamine and ECT. J Affect Disord 186:306–311. https://doi.org/10.1016/j.jad.2015.06.033

    Article  CAS  PubMed  Google Scholar 

  98. Shwartz A, Betzer O, Kronfeld N, Kazimirsky G, Cazacu S, Finniss S, Lee HK, Motiei M et al (2017) Therapeutic effect of astroglia-like mesenchymal stem cells expressing glutamate transporter in a genetic rat model of depression. Theranostics 7(10):2690–2703. https://doi.org/10.7150/thno.18914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G (2010) Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 15(12):1164–1175. https://doi.org/10.1038/mp.2009.110

    Article  CAS  PubMed  Google Scholar 

  100. Kin K, Yasuhara T, Borlongan CV, Date I (2018) Encapsulated stem cells ameliorate depressive-like behavior via growth factor secretion. Brain Circ 4(3):128–132. https://doi.org/10.4103/bc.bc_17_18

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kin K, Yasuhara T, Kameda M, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N et al (2020) Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats. Mol Psychiatry 25(6):1202–1214. https://doi.org/10.1038/s41380-018-0208-0

    Article  CAS  PubMed  Google Scholar 

  102. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110. https://doi.org/10.1523/JNEUROSCI.20-24-09104.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J (2009) Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol 6(3):207–213. https://doi.org/10.1038/cmi.2009.28

    Article  PubMed  PubMed Central  Google Scholar 

  104. Long Q, Li J, Luo Q, Hei Y, Wang K, Tian Y, Yang J, Lei H et al (2015) MRI tracking of bone marrow mesenchymal stem cells labeled with ultra-small superparamagnetic iron oxide nanoparticles in a rat model of temporal lobe epilepsy. Neurosci Lett 606:30–35. https://doi.org/10.1016/j.neulet.2015.08.040

    Article  CAS  PubMed  Google Scholar 

  105. Ruzicka J, Kulijewicz-Nawrot M, Rodrigez-Arellano JJ, Jendelova P, Sykova E (2016) Mesenchymal stem cells preserve working memory in the 3xTg-AD mouse model of Alzheimer’s disease. Int J Mol Sci 17(2). https://doi.org/10.3390/ijms17020152

  106. Date I, Ohmoto T, Imaoka T, Ono T, Hammang JP, Francis J, Greco C, Emerich DF (1996) Cografting with polymer-encapsulated human nerve growth factor-secreting cells and chromaffin cell survival and behavioral recovery in hemiparkinsonian rats. J Neurosurg 84(6):1006–1012. https://doi.org/10.3171/jns.1996.84.6.1006

    Article  CAS  PubMed  Google Scholar 

  107. Salem NA, El-Shamarka M, Khadrawy Y, El-Shebiney S (2018) New prospects of mesenchymal stem cells for ameliorating temporal lobe epilepsy. Inflammopharmacology 26(4):963–972. https://doi.org/10.1007/s10787-018-0456-2

    Article  CAS  PubMed  Google Scholar 

  108. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427. https://doi.org/10.1016/j.cytogfr.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  109. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198(1):54–64. https://doi.org/10.1016/j.expneurol.2005.10.029

    Article  CAS  PubMed  Google Scholar 

  110. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102(50):18171–18176. https://doi.org/10.1073/pnas.0508945102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kassis I, Grigoriadis N, Gowda-Kurkalli B, Mizrachi-Kol R, Ben-Hur T, Slavin S, Abramsky O, Karussis D (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65(6):753–761. https://doi.org/10.1001/archneur.65.6.753

    Article  PubMed  Google Scholar 

  112. Lang UE, Borgwardt S (2013) Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 31(6):761–777. https://doi.org/10.1159/000350094

    Article  CAS  PubMed  Google Scholar 

  113. Serafini G, Hayley S, Pompili M, Dwivedi Y, Brahmachari G, Girardi P, Amore M (2014) Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets? CNS Neurol Disord Drug Targets 13(10):1708–1721. https://doi.org/10.2174/1871527313666141130223723

    Article  PubMed  Google Scholar 

  114. Boucas AP, Rheinheimer J, Lagopoulos J (2022) Why severe COVID-19 patients are at greater risk of developing depression: a molecular perspective. Neuroscientist 28(1):11–19. https://doi.org/10.1177/1073858420967892

    Article  CAS  PubMed  Google Scholar 

  115. Won E, Na KS, Kim YK (2021) Associations between melatonin, neuroinflammation, and brain alterations in depression. Int J Mol Sci 23(1). https://doi.org/10.3390/ijms23010305

  116. Dantzer R (2006) Cytokine, sickness behavior, and depression. Neurol Clin 24(3):441–460. https://doi.org/10.1016/j.ncl.2006.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  117. Won E, Kim YK (2016) Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr Neuropharmacol 14(7):665–673. https://doi.org/10.2174/1570159x14666151208113006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Muller N (2014) Immunology of major depression. NeuroImmunoModulation 21(2–3):123–130. https://doi.org/10.1159/000356540

    Article  CAS  PubMed  Google Scholar 

  119. Kim YK, Na KS, Shin KH, Jung HY, Choi SH, Kim JB (2007) Cytokine imbalance in the pathophysiology of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 31(5):1044–1053. https://doi.org/10.1016/j.pnpbp.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  120. Dhabhar FS, Burke HM, Epel ES, Mellon SH, Rosser R, Reus VI, Wolkowitz OM (2009) Low serum IL-10 concentrations and loss of regulatory association between IL-6 and IL-10 in adults with major depression. J Psychiatr Res 43(11):962–969. https://doi.org/10.1016/j.jpsychires.2009.05.010

    Article  PubMed  Google Scholar 

  121. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111(12):1805–1812. https://doi.org/10.1172/JCI18921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kim YK, Won E (2017) The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav Brain Res 329:6–11. https://doi.org/10.1016/j.bbr.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  123. Vazquez S, Garner B, Sheil MM, Truscott RJ (2000) Characterisation of the major autoxidation products of 3-hydroxykynurenine under physiological conditions. Free Radic Res 32(1):11–23. https://doi.org/10.1080/10715760000300021

    Article  CAS  PubMed  Google Scholar 

  124. Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70(1):299–307. https://doi.org/10.1046/j.1471-4159.1998.70010299.x

    Article  CAS  PubMed  Google Scholar 

  125. Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY et al (2000) 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry 39(24):7266–7275. https://doi.org/10.1021/bi992997s

    Article  CAS  PubMed  Google Scholar 

  126. Tavares RG, Tasca CI, Santos CE, Alves LB, Porciuncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40(7):621–627. https://doi.org/10.1016/s0197-0186(01)00133-4

    Article  CAS  PubMed  Google Scholar 

  127. Ting KK, Brew BJ, Guillemin GJ (2009) Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer’s disease. J Neuroinflammation 6:36. https://doi.org/10.1186/1742-2094-6-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Perez-De La Cruz V, Carrillo-Mora P, Santamaria A (2012) Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res 5:1–8. https://doi.org/10.4137/IJTR.S8158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Barrientos RM, Sprunger DB, Campeau S, Higgins EA, Watkins LR, Rudy JW, Maier SF (2003) Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience 121(4):847–853. https://doi.org/10.1016/s0306-4522(03)00564-5

    Article  CAS  PubMed  Google Scholar 

  130. Ben Menachem-Zidon O, Goshen I, Kreisel T, Ben Menahem Y, Reinhartz E, Ben Hur T, Yirmiya R (2008) Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology 33(9):2251–2262. https://doi.org/10.1038/sj.npp.1301606

    Article  CAS  PubMed  Google Scholar 

  131. Wu CW, Chen YC, Yu L, Chen HI, Jen CJ, Huang AM, Tsai HJ, Chang YT et al (2007) Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J Neurochem 103(6):2471–2481. https://doi.org/10.1111/j.1471-4159.2007.04987.x

    Article  CAS  PubMed  Google Scholar 

  132. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105(2):751–756. https://doi.org/10.1073/pnas.0708092105

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ida T, Hara M, Nakamura Y, Kozaki S, Tsunoda S, Ihara H (2008) Cytokine-induced enhancement of calcium-dependent glutamate release from astrocytes mediated by nitric oxide. Neurosci Lett 432(3):232–236. https://doi.org/10.1016/j.neulet.2007.12.047

    Article  CAS  PubMed  Google Scholar 

  134. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031. https://doi.org/10.1152/physrev.00049.2005

    Article  CAS  PubMed  Google Scholar 

  135. Jia KK, Ding H, Yu HW, Dong TJ, Pan Y, Kong LD (2018) Huanglian-Wendan decoction inhibits NF-kappaB/NLRP3 inflammasome activation in liver and brain of rats exposed to chronic unpredictable mild stress. Mediators Inflamm 2018:3093516. https://doi.org/10.1155/2018/3093516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C et al (2022) The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 7(1):92. https://doi.org/10.1038/s41392-022-00932-0

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AI, Le AD et al (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184(5):2321–2328. https://doi.org/10.4049/jimmunol.0902023

    Article  CAS  PubMed  Google Scholar 

  138. Cassano JM, Schnabel LV, Goodale MB, Fortier LA (2018) Inflammatory licensed equine MSCs are chondroprotective and exhibit enhanced immunomodulation in an inflammatory environment. Stem Cell Res Ther 9(1):82. https://doi.org/10.1186/s13287-018-0840-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150. https://doi.org/10.1016/j.stem.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  140. Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G (2012) How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 33(3):136–143. https://doi.org/10.1016/j.it.2011.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Szabo E, Fajka-Boja R, Kriston-Pal E, Hornung A, Makra I, Kudlik G, Uher F, Katona RL et al (2015) Licensing by inflammatory cytokines abolishes heterogeneity of immunosuppressive function of mesenchymal stem cell population. Stem Cells Dev 24(18):2171–2180. https://doi.org/10.1089/scd.2014.0581

    Article  CAS  PubMed  Google Scholar 

  142. Kohler O, Krogh J, Mors O, Benros ME (2016) Inflammation in depression and the potential for anti-inflammatory treatment. Curr Neuropharmacol 14(7):732–742. https://doi.org/10.2174/1570159x14666151208113700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jin M, Sheng W, Han L, He Q, Ji X, Liu K (2018) Activation of BDNF-TrkB signaling pathway-regulated brain inflammation in pentylenetetrazole-induced seizures in zebrafish. Fish Shellfish Immunol 83:26–36. https://doi.org/10.1016/j.fsi.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  144. Gao J, Xiong B, Zhang B, Li S, Huang N, Zhan G, Jiang R, Yang L et al (2018) Sulforaphane alleviates lipopolysaccharide-induced spatial learning and memory dysfunction in mice: the role of BDNF-mTOR signaling pathway. Neuroscience 388:357–366. https://doi.org/10.1016/j.neuroscience.2018.07.052

    Article  CAS  PubMed  Google Scholar 

  145. Huang X, Fei GQ, Liu WJ, Ding J, Wang Y, Wang H, Ji JL, Wang X (2020) Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-kappaB signaling pathways. Acta Pharmacol Sin 41(5):612–619. https://doi.org/10.1038/s41401-019-0317-6

    Article  CAS  PubMed  Google Scholar 

  146. Zhang Y, Wang X, Li Y, Liu R, Pan J, Tang X, Sun S, Liu J et al (2021) Human umbilical cord mesenchymal stem cells ameliorate depression by regulating Jmjd3 and microglia polarization in myocardial infarction mice. Psychopharmacology 238(10):2973–2984. https://doi.org/10.1007/s00213-021-05912-w

    Article  CAS  PubMed  Google Scholar 

  147. Wang Y, Huang Y, Xu Y, Ruan W, Wang H, Zhang Y, Saavedra JM, Zhang L et al (2018) A dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization. Antioxid Redox Signal 28(2):141–163. https://doi.org/10.1089/ars.2017.7003

    Article  CAS  PubMed  Google Scholar 

  148. Yang X, Chen S, Shao Z, Li Y, Wu H, Li X, Mao L, Zhou Z et al (2018) Apolipoprotein E deficiency exacerbates spinal cord injury in mice: inflammatory response and oxidative stress mediated by NF-kappaB signaling pathway. Front Cell Neurosci 12:142. https://doi.org/10.3389/fncel.2018.00142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wen Z, Hou W, Wu W, Zhao Y, Dong X, Bai X, Peng L, Song L (2018) 6′-O-galloylpaeoniflorin attenuates cerebral ischemia reperfusion-induced neuroinflammation and oxidative stress via PI3K/Akt/Nrf2 activation. Oxid Med Cell Longev 2018:8678267. https://doi.org/10.1155/2018/8678267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. MacDowell KS, Caso JR, Martin-Hernandez D, Moreno BM, Madrigal JLM, Mico JA, Leza JC, Garcia-Bueno B (2016) The atypical antipsychotic paliperidone regulates endogenous antioxidant/anti-inflammatory pathways in rat models of acute and chronic restraint stress. Neurotherapeutics 13(4):833–843. https://doi.org/10.1007/s13311-016-0438-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang L, Zhang J, You Z (2018) Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci 12:306. https://doi.org/10.3389/fncel.2018.00306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Deneris ES, Wyler SC (2012) Serotonergic transcriptional networks and potential importance to mental health. Nat Neurosci 15(4):519–527. https://doi.org/10.1038/nn.3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lu J, Zhong X, Liu H, Hao L, Huang CT, Sherafat MA, Jones J, Ayala M et al (2016) Generation of serotonin neurons from human pluripotent stem cells. Nat Biotechnol 34(1):89–94. https://doi.org/10.1038/nbt.3435

    Article  CAS  PubMed  Google Scholar 

  154. Mohler H (2012) The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62(1):42–53. https://doi.org/10.1016/j.neuropharm.2011.08.040

    Article  CAS  PubMed  Google Scholar 

  155. Okamoto H, Voleti B, Banasr M, Sarhan M, Duric V, Girgenti MJ, Dileone RJ, Newton SS et al (2010) Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry 68(6):521–527. https://doi.org/10.1016/j.biopsych.2010.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tyagarajan SK, Ghosh H, Yevenes GE, Nikonenko I, Ebeling C, Schwerdel C, Sidler C, Zeilhofer HU et al (2011) Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin. Proc Natl Acad Sci U S A 108(1):379–384. https://doi.org/10.1073/pnas.1011824108

    Article  PubMed  Google Scholar 

  157. Cunningham M, Cho JH, Leung A, Savvidis G, Ahn S, Moon M, Lee PK, Han JJ et al (2014) hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell 15(5):559–573. https://doi.org/10.1016/j.stem.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Perez SM, Lodge DJ (2013) Hippocampal interneuron transplants reverse aberrant dopamine system function and behavior in a rodent model of schizophrenia. Mol Psychiatry 18(11):1193–1198. https://doi.org/10.1038/mp.2013.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Enciu AM, Nicolescu MI, Manole CG, Muresanu DF, Popescu LM, Popescu BO (2011) Neuroregeneration in neurodegenerative disorders. BMC Neurol 11:75. https://doi.org/10.1186/1471-2377-11-75

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kang JM, Yeon BK, Cho SJ, Suh YH (2016) Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J Alzheimers Dis 54(3):879–889. https://doi.org/10.3233/JAD-160406

    Article  PubMed  Google Scholar 

  161. Xuan AG, Luo M, Ji WD, Long DH (2009) Effects of engrafted neural stem cells in Alzheimer’s disease rats. Neurosci Lett 450(2):167–171. https://doi.org/10.1016/j.neulet.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  162. Hoveizi E, Mohammadi T, Moazedi AA, Zamani N, Eskandary A (2018) Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model. Cytotherapy 20(7):964–973. https://doi.org/10.1016/j.jcyt.2018.03.036

    Article  CAS  PubMed  Google Scholar 

  163. Dunnett SB, Bjorklund A, Schmidt RH, Stenevi U, Iversen SD (1983) Intracerebral grafting of neuronal cell suspensions. V. Behavioural recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiol Scand Suppl 522:39–47

    CAS  PubMed  Google Scholar 

  164. Brundin P, Nilsson OG, Strecker RE, Lindvall O, Astedt B, Bjorklund A (1986) Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp Brain Res 65(1):235–240. https://doi.org/10.1007/BF00243848

    Article  CAS  PubMed  Google Scholar 

  165. Redmond DE, Sladek JR Jr, Roth RH, Collier TJ, Elsworth JD, Deutch AY, Haber S (1986) Fetal neuronal grafts in monkeys given methylphenyltetrahydropyridine. Lancet 1(8490):1125–1127. https://doi.org/10.1016/s0140-6736(86)91839-8

    Article  CAS  PubMed  Google Scholar 

  166. Stromberg I, Bygdeman M, Goldstein M, Seiger A, Olson L (1986) Human fetal substantia nigra grafted to the dopamine-denervated striatum of immunosuppressed rats: evidence for functional reinnervation. Neurosci Lett 71(3):271–276. https://doi.org/10.1016/0304-3940(86)90632-4

    Article  CAS  PubMed  Google Scholar 

  167. Bakay RA, Barrow DL, Fiandaca MS, Iuvone PM, Schiff A, Collins DC (1987) Biochemical and behavioral correction of MPTP Parkinson-like syndrome by fetal cell transplantation. Ann N Y Acad Sci 495:623–640. https://doi.org/10.1111/j.1749-6632.1987.tb23705.x

    Article  CAS  PubMed  Google Scholar 

  168. Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, Sekiguchi K, Nakagawa M et al (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2(3):337–350. https://doi.org/10.1016/j.stemcr.2014.01.013

    Article  CAS  Google Scholar 

  169. Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Mizuma H, Takara S et al (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548(7669):592–596. https://doi.org/10.1038/nature23664

    Article  CAS  PubMed  Google Scholar 

  170. Wakeman DR, Hiller BM, Marmion DJ, McMahon CW, Corbett GT, Mangan KP, Ma J, Little LE et al (2017) Cryopreservation maintains functionality of human iPSC dopamine neurons and rescues parkinsonian phenotypes in vivo. Stem Cell Rep 9(1):149–161. https://doi.org/10.1016/j.stemcr.2017.04.033

    Article  CAS  Google Scholar 

  171. Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng PY, Klyachko VA, Nerbonne JM et al (2014) Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84(2):311–323. https://doi.org/10.1016/j.neuron.2014.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lopez-Gonzalez R, Kunckles P, Velasco I (2009) Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells. Cell Transplant 18(10):1171–1181. https://doi.org/10.3727/096368909X12483162197123

    Article  PubMed  Google Scholar 

  173. Ciervo Y, Ning K, Jun X, Shaw PJ, Mead RJ (2017) Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener 12(1):85. https://doi.org/10.1186/s13024-017-0227-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Baron-Van Evercooren A (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 99(20):13211–13216. https://doi.org/10.1073/pnas.192314199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ruschenschmidt C, Koch PG, Brustle O, Beck H (2005) Functional properties of ES cell-derived neurons engrafted into the hippocampus of adult normal and chronically epileptic rats. Epilepsia 46(Suppl 5):174–183. https://doi.org/10.1111/j.1528-1167.2005.01028.x

    Article  PubMed  Google Scholar 

  176. Baraban SC, Southwell DG, Estrada RC, Jones DL, Sebe JY, Alfaro-Cervello C, Garcia-Verdugo JM, Rubenstein JL et al (2009) Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc Natl Acad Sci U S A 106(36):15472–15477. https://doi.org/10.1073/pnas.0900141106

    Article  PubMed  PubMed Central  Google Scholar 

  177. Liu M, Li K, Wang Y, Zhao G, Jiang J (2020) Stem cells in the treatment of neuropathic pain: research progress of mechanism. Stem Cells Int 2020:8861251. https://doi.org/10.1155/2020/8861251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Krakora D, Mulcrone P, Meyer M, Lewis C, Bernau K, Gowing G, Zimprich C, Aebischer P et al (2013) Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther 21(8):1602–1610. https://doi.org/10.1038/mt.2013.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Suzuki M, McHugh J, Tork C, Shelley B, Hayes A, Bellantuono I, Aebischer P, Svendsen CN (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16(12):2002–2010. https://doi.org/10.1038/mt.2008.197

    Article  CAS  PubMed  Google Scholar 

  180. Marconi S, Bonaconsa M, Scambi I, Squintani GM, Rui W, Turano E, Ungaro D, D’Agostino S et al (2013) Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model. Neuroscience 248:333–343. https://doi.org/10.1016/j.neuroscience.2013.05.034

    Article  CAS  PubMed  Google Scholar 

  181. Corti S, Locatelli F, Papadimitriou D, Del Bo R, Nizzardo M, Nardini M, Donadoni C, Salani S et al (2007) Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain 130(Pt 5):1289–1305. https://doi.org/10.1093/brain/awm043

    Article  PubMed  Google Scholar 

  182. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16(4):509–521. https://doi.org/10.1089/hum.2005.16.509

    Article  CAS  PubMed  Google Scholar 

  183. Hwang DH, Lee HJ, Park IH, Seok JI, Kim BG, Joo IS, Kim SU (2009) Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther 16(10):1234–1244. https://doi.org/10.1038/gt.2009.80

    Article  CAS  PubMed  Google Scholar 

  184. Park S, Kim HT, Yun S, Kim IS, Lee J, Lee IS, Park KI (2009) Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice. Exp Mol Med 41(7):487–500. https://doi.org/10.3858/emm.2009.41.7.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jia Y, Cao N, Zhai J, Zeng Q, Zheng P, Su R, Liao T, Liu J et al (2020) HGF mediates clinical-grade human umbilical cord-derived mesenchymal stem cells improved functional recovery in a senescence-accelerated mouse model of Alzheimer’s disease. Adv Sci (Weinh) 7(17):1903809. https://doi.org/10.1002/advs.201903809

    Article  CAS  PubMed  Google Scholar 

  186. Kim DH, Lee D, Chang EH, Kim JH, Hwang JW, Kim JY, Kyung JW, Kim SH et al (2015) GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer’s disease model. Stem Cells Dev 24(20):2378–2390. https://doi.org/10.1089/scd.2014.0487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Park H, Chang KA (2020) Therapeutic potential of repeated intravenous transplantation of human adipose-derived stem cells in subchronic MPTP-induced Parkinson’s disease mouse model. Int J Mol Sci 21(21). https://doi.org/10.3390/ijms21218129

  188. Jalali MS, Sarkaki A, Farbood Y, Azandeh SS, Mansouri E, Ghasemi Dehcheshmeh M, Saki G (2020) Transplanted Wharton’s jelly mesenchymal stem cells improve memory and brain hippocampal electrophysiology in rat model of Parkinson’s disease. J Chem Neuroanat 110:101865. https://doi.org/10.1016/j.jchemneu.2020.101865

    Article  CAS  PubMed  Google Scholar 

  189. Park BN, Kim JH, Lee K, Park SH, An YS (2015) Improved dopamine transporter binding activity after bone marrow mesenchymal stem cell transplantation in a rat model of Parkinson’s disease: small animal positron emission tomography study with F-18 FP-CIT. Eur Radiol 25(5):1487–1496. https://doi.org/10.1007/s00330-014-3549-3

    Article  PubMed  Google Scholar 

  190. Ebrahimi MJ, Aliaghaei A, Boroujeni ME, Khodagholi F, Meftahi G, Abdollahifar MA, Ahmadi H, Danyali S et al (2018) Human umbilical cord matrix stem cells reverse oxidative stress-induced cell death and ameliorate motor function and striatal atrophy in rat model of Huntington disease. Neurotox Res 34(2):273–284. https://doi.org/10.1007/s12640-018-9884-4

    Article  CAS  PubMed  Google Scholar 

  191. Schain M, Kreisl WC (2017) Neuroinflammation in neurodegenerative disorders-a review. Curr Neurol Neurosci Rep 17(3):25. https://doi.org/10.1007/s11910-017-0733-2

    Article  CAS  PubMed  Google Scholar 

  192. Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 13(4):3391–3396. https://doi.org/10.3892/mmr.2016.4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Subhramanyam CS, Wang C, Hu Q, Dheen ST (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 94:112–120. https://doi.org/10.1016/j.semcdb.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  194. Han M, Cao Y, Guo X, Chu X, Li T, Xue H, Xin D, Yuan L et al (2021) Mesenchymal stem cell-derived extracellular vesicles promote microglial M2 polarization after subarachnoid hemorrhage in rats and involve the AMPK/NF-kappaB signaling pathway. Biomed Pharmacother 133:111048. https://doi.org/10.1016/j.biopha.2020.111048

    Article  CAS  PubMed  Google Scholar 

  195. Na L, Wang S, Liu T, Zhang L (2020) Ultrashort wave combined with human umbilical cord mesenchymal stem cell (HUC-MSC) transplantation inhibits NLRP3 inflammasome and improves spinal cord injury via MK2/TTP signalling pathway. Biomed Res Int 2020:3021750. https://doi.org/10.1155/2020/3021750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Liu X, Zhang M, Liu H, Zhu R, He H, Zhou Y, Zhang Y, Li C et al (2021) Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp Neurol 341:113700. https://doi.org/10.1016/j.expneurol.2021.113700

    Article  CAS  PubMed  Google Scholar 

  197. Liu Y, Zhang R, Yan K, Chen F, Huang W, Lv B, Sun C, Xu L et al (2014) Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflammation 11:135. https://doi.org/10.1186/1742-2094-11-135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cui GH, Guo HD, Li H, Zhai Y, Gong ZB, Wu J, Liu JS, Dong YR et al (2019) RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun Ageing 16:10. https://doi.org/10.1186/s12979-019-0150-2

    Article  PubMed  PubMed Central  Google Scholar 

  199. Mert T, Kurt AH, Altun I, Celik A, Baran F, Gunay I (2017) Pulsed magnetic field enhances therapeutic efficiency of mesenchymal stem cells in chronic neuropathic pain model. Bioelectromagnetics 38(4):255–264. https://doi.org/10.1002/bem.22038

    Article  CAS  PubMed  Google Scholar 

  200. Guo W, Imai S, Yang JL, Zou S, Watanabe M, Chu YX, Mohammad Z, Xu H et al (2017) In vivo immune interactions of multipotent stromal cells underlie their long-lasting pain-relieving effect. Sci Rep 7(1):10107. https://doi.org/10.1038/s41598-017-10251-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Omi M, Hata M, Nakamura N, Miyabe M, Kobayashi Y, Kamiya H, Nakamura J, Ozawa S et al (2016) Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti-inflammation phenotypes and ameliorated diabetic polyneuropathy. J Diabetes Investig 7(4):485–496. https://doi.org/10.1111/jdi.12452

    Article  CAS  PubMed  Google Scholar 

  202. Kamp J, Van Velzen M, Olofsen E, Boon M, Dahan A, Niesters M (2019) Pharmacokinetic and pharmacodynamic considerations for NMDA-receptor antagonist ketamine in the treatment of chronic neuropathic pain: an update of the most recent literature. Expert Opin Drug Metab Toxicol 15(12):1033–1041. https://doi.org/10.1080/17425255.2019.1689958

    Article  CAS  PubMed  Google Scholar 

  203. Zhou XL, Zhang CJ, Peng YN, Wang Y, Xu HJ, Liu CM (2019) ROR2 modulates neuropathic pain via phosphorylation of NMDA receptor subunit GluN2B in rats. Br J Anaesth 123(2):e239–e248. https://doi.org/10.1016/j.bja.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  204. Chen J, Li L, Chen SR, Chen H, Xie JD, Sirrieh RE, MacLean DM, Zhang Y et al (2018) The alpha2delta-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep 22(9):2307–2321. https://doi.org/10.1016/j.celrep.2018.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Guo W, Chu YX, Imai S, Yang JL, Zou S, Mohammad Z, Wei F, Dubner R et al (2016) Further observations on the behavioral and neural effects of bone marrow stromal cells in rodent pain models. Mol Pain 12. https://doi.org/10.1177/1744806916658043

  206. Lin CH, Wu SH, Lee SS, Lin YN, Kuo YR, Chai CY, Huang SH (2017) Autologous adipose-derived stem cells reduce burn-induced neuropathic pain in a rat model. Int J Mol Sci 19(1). https://doi.org/10.3390/ijms19010034

  207. Ltd. NCC (2017) A study to evaluate the safety and efficacy of AstroStem in treatment of Alzheimer’s disease.https://classic.clinicaltrials.gov/show/NCT03117738. Accessed date 2023.11.12

  208. Therapeutics B-C, Medicine CIfR (2017) Safety and efficacy of repeated administrations of NurOwn® in ALS patients. https://classic.clinicaltrials.gov/show/NCT03280056. Accessed date 2023.11.12

  209. Therapeutics B-C (2014) Phase 2, randomized, double blind, placebo controlled multicenter study of autologous MSC-NTF cells in patients with ALS. https://classic.clinicaltrials.gov/show/NCT02017912. Accessed date 2023.11.12

  210. The University of Texas Health Science Center H (2017) Allogeneic bone marrow-derived mesenchymal stem cell therapy for idiopathic Parkinson’s disease. https://classic.clinicaltrials.gov/show/NCT02611167. Accessed date 2023.11.12

  211. Ihsan M, Salloum M, MPH, Abuse NIoA, Alcoholism, Valley UoTRG (2018) Allogeneic human mesenchymal stem cell infusion vs placebo in alcohol use disorder and major depression. https://classic.clinicaltrials.gov/show/NCT03265808. Accessed date 2023.11.12

  212. The University of Texas Health Science Center H (2021) Adjunctive allogeneic mesenchymal stem cells for treatment-resistant bipolar depression. https://classic.clinicaltrials.gov/show/NCT03522545. Accessed date 2023.11.12

  213. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12. https://doi.org/10.1186/1478-811X-9-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, Zdravkovic T, Ilic D et al (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2(2):113–117. https://doi.org/10.1016/j.stem.2007.12.013

    Article  CAS  PubMed  Google Scholar 

  215. Moradi S, Mahdizadeh H, Saric T, Kim J, Harati J, Shahsavarani H, Greber B, Moore JB (2019) Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 10(1):341. https://doi.org/10.1186/s13287-019-1455-y

    Article  PubMed  PubMed Central  Google Scholar 

  216. Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2(3):198–210. https://doi.org/10.1016/j.scr.2009.02.002

    Article  PubMed  Google Scholar 

  217. Burt RK, Shah SJ, Dill K, Grant T, Gheorghiade M, Schroeder J, Craig R, Hirano I et al (2011) Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378(9790):498–506. https://doi.org/10.1016/S0140-6736(11)60982-3

    Article  CAS  PubMed  Google Scholar 

  218. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F et al (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24(6):1433–1440. https://doi.org/10.1634/stemcells.2005-0393

    Article  CAS  PubMed  Google Scholar 

  219. Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P (2007) Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25(6):1478–1489. https://doi.org/10.1634/stemcells.2006-0585

    Article  CAS  PubMed  Google Scholar 

  220. Doi D, Morizane A, Kikuchi T, Onoe H, Hayashi T, Kawasaki T, Motono M, Sasai Y et al (2012) Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem Cells 30(5):935–945. https://doi.org/10.1002/stem.1060

    Article  CAS  PubMed  Google Scholar 

  221. Jin X, Lin T, Xu Y (2016) Stem cell therapy and immunological rejection in animal models. Curr Mol Pharmacol 9(4):284–288. https://doi.org/10.2174/1874467208666150928153511

    Article  CAS  PubMed  Google Scholar 

  222. Tolosa L, Pareja E, Gomez-Lechon MJ (2016) Clinical application of pluripotent stem cells: an alternative cell-based therapy for treating liver diseases? Transplantation 100(12):2548–2557. https://doi.org/10.1097/TP.0000000000001426

    Article  CAS  PubMed  Google Scholar 

  223. Zhao T, Zhang ZN, Westenskow PD, Todorova D, Hu Z, Lin T, Rong Z, Kim J et al (2015) Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell 17(3):353–359. https://doi.org/10.1016/j.stem.2015.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Yamanaka S (2020) Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27(4):523–531. https://doi.org/10.1016/j.stem.2020.09.014

    Article  CAS  PubMed  Google Scholar 

  225. Chen Y, Pan C, Xuan A, Xu L, Bao G, Liu F, Fang J, Long D (2015) Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimer’s disease model rats. Med Sci Monit 21:3608–3615. https://doi.org/10.12659/msm.894567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Hallett PJ, Cooper O, Sadi D, Robertson H, Mendez I, Isacson O (2014) Long-term health of dopaminergic neuron transplants in Parkinson’s disease patients. Cell Rep 7(6):1755–1761. https://doi.org/10.1016/j.celrep.2014.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the National Natural Science Foundation of China (NSFC), China Administration of Traditional Chinese Medicine, Heilongjiang Provincial Administration of Traditional Chinese Medicine, and Heilongjiang University of Traditional Chinese Medicine in China for their assistance.

Funding

This work was supported by the Research Project of Heilongjiang Traditional Chinese Medicine Administration (Grant Number: ZHY2022-110); Youth Program of the National Natural Science Foundation of China (Grant Number: 82205163); Chief Scientist of Qi-Huang Project of National Traditional Chinese Medicine Inheritance and Innovation “One Hundred Million” Talent Project (Grant Number: [2021] No. 7); National Famous Old Traditional Chinese Medicine Experts Inheritance Studio Construction Program of National Administration of TCM (Grant Number: [2022] No. 75); The Seventh Batch of National Famous Old Traditional Chinese Medicine Experts Experience Heritage Construction Program of National Administration of TCM (Grant Number: [2022] No. 76); and Heilongjiang Touyan Innovation Team Program (Grant Number: [2019] No. 5); This work was also supported by the Scientific Research Foundation of Heilongjiang University of traditional Chinese Medicine (Grant Number: 2019MS34) and Post-doctoral Research Start-up Project in Heilongjiang Province (Grant Number: LBH-Q21193).

Author information

Authors and Affiliations

Authors

Contributions

H-xK, ZC: conception and design, manuscript writing, administrative support, data analysis and interpretation, and final approval of the manuscript. ZC: manuscript writing and data analysis and interpretation. Q-yW, Y-pS: correction/touchup and interpretation. BJ, X-mZ: figure presentation and interpretation. XP, X-xT, L-hL: reference organization and data analysis and interpretation. H-xK: administrative support, and final approval of the manuscript. All authors have read and approved the article.

Corresponding author

Correspondence to Hai-xue Kuang.

Ethics declarations

Ethics Approval

Not applicable.

Informed consent

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Research involving Human Participants and/or Animals

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., Wang, Qy., Li, Lh. et al. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03843-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03843-5

Keywords

Navigation