Skip to main content

Advertisement

Log in

New prospects of mesenchymal stem cells for ameliorating temporal lobe epilepsy

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Temporal lobe epilepsy (TLE) is present in 30% of epileptic patients and does not respond to conventional treatments. Bone marrow derived mesenchymal stem cells (BMSCs) induce endogenous neural stem cells, inhibit neurodegeneration, and promote brain self-repair mechanisms. The present study addresses the feasibility of BMSCs transplantation against pilocarpine-induced TLE experimentally. BMSCs were injected either intravenously (IV) or in hippocampus bilaterally (IC). Increased cell count of BMSCs was achieved via IC route. BMSCs treatment ameliorated the pilocarpine-induced neurochemical and histological changes, retained amino acid neurotransmitters to the normal level, downregulated the immunoreactivity to insulin growth factor-1 receptor, synaptophysin, and caspase-3 and reduced oxidative insult and inflammatory markers detected in epileptic model. It is worth noting that BMSCs IC-administered showed more pronounced effects than those administered via IV route. BMSCs transplantation presents a promise for TLE treatment that has to be elucidated clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amengual-Cladera E, Nadal-Casellas A, Gómez-Pérez Y, Gomila I, Prieto RM, Proenza AM, Lladó I (2011) Phytotherapy in a rat model of hyperoxaluria: the antioxidant effects of quercetin involve serum paraoxonase 1 activation. Exp Biol Med 236(10):1133–1138

    Article  CAS  Google Scholar 

  • Arroyo S, de La MA (2001) Life-threatening adverse events of antiepileptic drugs. Epilepsy Res 47:155–174

    Article  PubMed  CAS  Google Scholar 

  • Bancroft JD, Stevens A, Turner DR (1996) Theory and practice of histological techniques. Churchill Livingstone, New York (the text: 766)

    Google Scholar 

  • Brenneman M, Sharma S, Harting M, Strong R, Cox CS Jr, Aronowski J, Savitz SI (2010) Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J Cereb Blood Flow Metab 30(1):140–149

    Article  PubMed  Google Scholar 

  • Calió M, Darci S, Gui Mi K (2014) Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. Free Radical Biol Med 70:141–154

    Article  CAS  Google Scholar 

  • Cavalheiro EA, Leite JP, Bortolotto ZA (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous I recurrent seizures. Epilepsia 32(6):778–782

    Article  PubMed  CAS  Google Scholar 

  • Cheng W, Qiantao Z, Shenyang Z (2015) Human umbilical cord mesenchymal stem cells protect against ischemic brain injury in mouse by regulating peripheral immunoinflammation. Brain Res 1594:293–304

    Article  PubMed  CAS  Google Scholar 

  • Costa F, Zaquer S, Affonso S, Michele F (2010) Prevention of seizures and reorganization of hippocampal functions by transplantation of bone marrow cells in the acute phase of experimental epilepsy. Seizure Eur J Epilepsy 19(2):84–92

    Article  Google Scholar 

  • DaCosta J, Maria J, Danielle D (2011) Seizure frequency in patients with mesial temporal lobe epilepsy transplanted with autologous bone marrow mononuclear cells: preliminary results. In: Tissue engineering part A, New Rochelle, USA, pp. 544–544

  • Dal P, Felipe FK, Mônica MR (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291(3):179–182

    Article  Google Scholar 

  • Danzer C, Kristy RC, Donald C, James O (2002) Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J Neurosci 22(22):9754–9763

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  • Eastwood L, Paul J (2001) Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 55(5):569–578

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  PubMed  CAS  Google Scholar 

  • Grdic R, Marija LR, Karmela B (2011) The paraoxonase 1, 2 and 3 in humans. Biochemia Medica 21(2):122–130

    Article  Google Scholar 

  • Griffin W, Sue T, Robert E (2002) Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in alzheimer’s disease. J Leukoc Biol 72(2):233–238

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta S (2003) Molecular signaling in death receptor and mitochondrial pathways of apoptosis (review). Int J Oncol 22(1):15–20

    PubMed  CAS  Google Scholar 

  • Hattiangady B, Rao MS, Zaman V, Shetty AK (2006) Incorporation of embryonic CA3 cell grafts into the adult hippocampus at 4-months after injury: effects of combined neurotrophic supplementation and caspase inhibition. Neuroscience 139(4):1369–1383

    Article  PubMed  CAS  Google Scholar 

  • Jiang G, Wang W, Cao Q, Gu J, Mi X, Wang K, Chen G, Wang X (2015) Insulin growth factor-1 (IGF-1) enhances hippocampal excitatory and seizure activity through IGF-1 receptor-mediated mechanisms in the epileptic brain. Clin Sci 129(12):1047–1060

  • Jiang L, Xiao L, Sugiura H, Huang X, Ali A, Kuro-o M, Deberardinis RJ, Boothman DA (2015) Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene 34(30):3908–3916

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Rhyu IJ, Park KW (2001) The induction of BDNF and c-Fos mRNA in the hippocampal formation after febrile seizures. NeuroReport 12(15):3243–3246

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Jae-Ho L, Se-Hyuk K (2010) Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J Neurotrauma 27(1):131–138

    Article  PubMed  Google Scholar 

  • Kitaur H, Mark S, Kunihiko A (2004) Marrow stromal cells and osteoclast precursors differentially contribute to TNF-α-induced osteoclastogenesis in vivo. J Immunol 173(8):4838–4846

    Article  Google Scholar 

  • Koo J, Cheol H, Se H (2003) The postnatal environment can counteract prenatal effects on cognitive ability, cell proliferation, and synaptic protein expression. FASEB J 17(11):1556–1558

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Brodie MJ (2006) Combination therapy in epilepsy. Drugs 66(14):1817–1829

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Jieli C, Chun L (2005) Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49(3):407–417

    Article  PubMed  Google Scholar 

  • Magistretti J, Li M, Mark H (2004) Spike patterning by Ca2+-dependent regulation of a muscarinic cation current in entorhinal cortex layer II neurons. J Neurophysiol 92(3):1644–1657

    Article  PubMed  CAS  Google Scholar 

  • Mert T, Akif H, Mahmut A (2015) Anti-inflammatory and anti-nociceptive actions of systemically or locally treated adipose-derived mesenchymal stem cells in experimental inflammatory model. Inflammation 38(3):1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Nascimento V, Márcia S, Aline A (2005) Antioxidant effect of nimodipine in young rats after pilocarpine-induced seizures. Pharmacol Biochem Behav 82(1):11–16

    Article  PubMed  CAS  Google Scholar 

  • Paglioli NE, Palmini A, Portuguez M, Paglioli E, Azambuja N, daCosta JC (2006) Seizure and memory outcome following temporal lobe surgery: selective compared with nonselective approaches for hippocampal sclerosis. J Neurosurg 1:70–78

    Article  Google Scholar 

  • Parr M, Charles H, Armand K (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40(7):609–619

    Article  PubMed  CAS  Google Scholar 

  • Raedt R, Annelies V, Kristl V, Paul B (2007) Cell therapy in models for temporal lobe epilepsy. Seizure 16(7):565–578

    Article  PubMed  CAS  Google Scholar 

  • Ramey WL, Martirosyan NL, Lieu CM, Hasham HA, Lemole GM, Weinand ME (2013) Current management and surgical outcomes of medically intractable epilepsy. Clin Neurol Neurosurg 115(12):2411–2418

    Article  PubMed  Google Scholar 

  • Riazi K, Michael A, Quentin J (2010) Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res 89(1):34–42

    Article  PubMed  CAS  Google Scholar 

  • Ruiz L, Ma B, Ana Ma L, Mariana L, Mercedes L, Herbert D (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59(6):383–388

    Article  Google Scholar 

  • Sashindranath M, Karen JM, Ian AT, Richard GC, Mark JC (2010) Early hippocampal oxidative stress is a direct consequence of seizures in the rapid electrical amygdala kindling model. Epilepsy Res 90(3):285–294

    Article  PubMed  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz R, Morayma R, Lisa K (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Investig 109(10):1291–1302

    Article  PubMed  CAS  Google Scholar 

  • Scorza F, Ricardo M, da Maria G, Naffah M (2009) The pilocarpine model of epilepsy: what have we learned? Anais Da Academia Brasileira de Ciencias 81(3):345–365

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom CE, Carmant L (2015) Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med 5(6):1–19

    Article  CAS  Google Scholar 

  • Tabakman R, Shimon L, Stela S, Hadar A, Philip L (2004) Interactions between the cells of the immune and nervous system: neurotrophins as neuroprotection mediators in CNS injury. Prog Brain Res 146:385–401

    Article  CAS  Google Scholar 

  • Tamaoki J, Mitsuko K, Kazuhiro K (1999) Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages. J Immunol 163(5):2909–2915

    PubMed  CAS  Google Scholar 

  • Tang Y, Takao Y, Koichi H (2007) Transplantation of bone marrow-derived stem cells: a promising therapy for stroke. Cell Transplant 16(2):159–169

    Article  PubMed  Google Scholar 

  • Tarsa L, Yukiko G (2002) Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci 99(2):1012–1016

    Article  PubMed  CAS  Google Scholar 

  • Turski W, Esper A, Michael S (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9(3):315–335

    Article  PubMed  CAS  Google Scholar 

  • Vezzani A, Silvia B, Teresa R (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22(6):797–803

    Article  PubMed  CAS  Google Scholar 

  • Vu NB, Phi LT, Dao TT, Le HT, Van Pham P (2016) Adipose derived stem cell transplantation is better than bone marrow mesenchymal stem cell transplantation in treating hindlimb ischemia in mice. Biomed Res Ther 3(9):46

    Article  Google Scholar 

  • Wang Q, Sue Y, Agnes S (2004) Resveratrol protects against neurotoxicity induced by kainic acid. Neurochem Res 29(11):2105–2112

    Article  PubMed  CAS  Google Scholar 

  • Watson AD, Berliner JA, Hama SY (1995) Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Investig 96(6):2882

    Article  PubMed  CAS  Google Scholar 

  • Williams NR, Okun MS (2013) Deep brain stimulation (DBS) at the interface of neurology and psychiatry. J Clin Invest 123(11):4546–4556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao L , Saiki C, Ide R (2014) Stem cell therapy for central nerve system injuries: glial cells hold the key. Neural Regen Res 9(13):1253

    Article  PubMed  PubMed Central  Google Scholar 

  • Zappia E, Simona C, Enrico P (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neveen A. Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, N.A., El-Shamarka, M., Khadrawy, Y. et al. New prospects of mesenchymal stem cells for ameliorating temporal lobe epilepsy. Inflammopharmacol 26, 963–972 (2018). https://doi.org/10.1007/s10787-018-0456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0456-2

Keywords

Navigation