Skip to main content
Log in

The Role of Necroptosis in Cerebral Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebral ischemia, also known as ischemic stroke, accounts for nearly 85% of all strokes and is the leading cause of disability worldwide. Due to disrupted blood supply to the brain, cerebral ischemic injury is trigged by a series of complex pathophysiological events including excitotoxicity, oxidative stress, inflammation, and cell death. Currently, there are few treatments for cerebral ischemia owing to an incomplete understanding of the molecular and cellular mechanisms. Accumulated evidence indicates that various types of programmed cell death contribute to cerebral ischemic injury, including apoptosis, ferroptosis, pyroptosis and necroptosis. Among these, necroptosis is morphologically similar to necrosis and is mediated by receptor-interacting serine/threonine protein kinase-1 and -3 and mixed lineage kinase domain-like protein. Necroptosis inhibitors have been shown to exert inhibitory effects on cerebral ischemic injury and neuroinflammation. In this review, we will discuss the current research progress regarding necroptosis in cerebral ischemia as well as the application of necroptosis inhibitors for potential therapeutic intervention in ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable

Abbreviations

LAAS:

Large artery atherosclerosis

tPA:

Tissue plasminogen activator

PCD:

Programmed cell death

RIPK1:

Receptor-interacting protein kinase 1

RIPK3:

Receptor-interacting protein kinase 3

MLKL:

Mixed lineage kinase domain-like protein

TNF:

Tumor necrosis factor

TLRs:

Toll-like receptors

IFNAR:

Interferon receptors

IFNAR:

Interferon receptors

ZBP1:

Z-DNA binding protein 1

TRADD:

TNF receptor-associated death domain,

cIAP1/2:

cellular inhibitor of apoptosis

TRAF2/5:

TNF receptor-associated factor 2/5

TAK1:

TGF-activated kinase 1

IKK:

IκB kinase

SMAC:

Second mitochondria-derived activator of caspase

CYLD:

Cylindromatosis

FADD:

Fas-associated death domain protein

RHIM:

RIP homotypic interaction motif

TRIF/ TICAM1:

TIR-domain-containing adapter-inducing interferon-β

ZBP1/DLM-1/DAI:

Z-DNA-binding protein 1

TLR3:

Toll-like receptor 3

Nec-1:

Necrostatin-1

MCAO:

Middle cerebral artery occlusion

OGD:

Oxygen-glucose deprivation

I/R:

ischemia/reperfusion

TAK1:

Transforming growth factor-activated kinase 1

MIP:

Myd88 inhibitory peptide

BBB:

Blood brain-barrier

EC:

Endothelium

ASIC1a:

Acid-sensing ion channel 1a

NSF:

N-ethylmaleimide-sensitive fusion ATPase

FHA:

Forkhead-associated

NDRG2:

N-myc downstream-regulated gene 2

pMCAO:

permanent middle cerebral artery occlusion

JNK:

The c-Jun N-terminal kinase

MAPKs:

Member of mitogen-activated protein kinases

AIF:

Apoptosis-inducing factor

DAMPs:

Damage-associated molecular patterns

HMGB1:

High mobility group box 1

BCP:

β-caryophyllene

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

MPTP:

Mitochondrial permeability transition pore

CHIP:

Carboxyl terminus of Hsp70-interacting protein

HSP90:

Heat shock protein 90

GA:

Geldanamycin

IL-1R1:

Interleukin-1 receptor 1

TRAF2:

Tumor necrosis factor receptor associated factor 2

Z-VAD:

Z-VAD-FMK

MALT1:

Mucosa-associated lymphoid tissue lymphoma translocator protein 1

tAIF:

truncated AIF

PCD:

Programmed cell death

Sirts:

Sirtuins

NAD+:

Nicotinamide adenine dinucleotide

ERK:

Extracellular signal-regulated kinase

ROS:

Reactive oxygens species

PGRN:

Progranulin

NLRP3:

NOD-like receptor family pyrin domain-containing 3

Nrf2:

Nuclear factor E2-related factor-2

IDO:

Indoleamine 2,3-dioxygenase

WMI:

White matter injury

PNS:

Panax notoginseng saponins

Ab4B19:

TrkB agonistic antibody

BDNF:

Brain-derived neurotrophic factor

PPO:

Pomelo peel oil

MD2:

Myeloid differentiation protein 2

Tat-CIRP:

Trans-trans-activating (Tat)-cold-inducible RNA binding protein

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE et al (2022) Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation 145(8):e153–e639. https://doi.org/10.1161/CIR.0000000000001052

    Article  PubMed  Google Scholar 

  2. Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A (2020) Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci 21(18). https://doi.org/10.3390/ijms21186454

  3. Tissue plasminogen activator for acute ischemic stroke (1995). N Engl J Med 333(24):1581–1587

  4. Tuo Q-Z, Zhang S-T, Lei P (2022) Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 42(1):259–305. https://doi.org/10.1002/med.21817

    Article  PubMed  Google Scholar 

  5. Yan W-T, Yang Y-D, Hu X-M, Ning W-Y, Liao L-S, Lu S, Zhao W-J, Zhang Q et al (2022) Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res 17(8):1761–1768. https://doi.org/10.4103/1673-5374.331539

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38(2):209–223. https://doi.org/10.1016/j.immuni.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Zhang J, Zhang Y, Wang Z, Song Y, Wei S, He M, You S et al (2019) TRAF2 protects against cerebral ischemia-induced brain injury by suppressing necroptosis. Cell Death Dis 10(5):328. https://doi.org/10.1038/s41419-019-1558-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naito MG, Xu D, Amin P, Lee J, Wang H, Li W, Kelliher M, Pasparakis M et al (2020) Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc Natl Acad Sci U S A 117(9):4959–4970. https://doi.org/10.1073/pnas.1916427117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng X-X, Li S-S, Sun F-Y (2019) Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis 10(4):807–817. https://doi.org/10.14336/AD.2018.0728

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nikseresht S, Khodagholi F, Ahmadiani A (2019) Protective effects of ex-527 on cerebral ischemia-reperfusion injury through necroptosis signaling pathway attenuation. J Cell Physiol 234(2):1816–1826. https://doi.org/10.1002/jcp.27055

    Article  CAS  PubMed  Google Scholar 

  11. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119

    Article  CAS  PubMed  Google Scholar 

  12. Cruz SA, Qin Z, Stewart AFR, Chen H-H (2018) Dabrafenib, an inhibitor of RIP3 kinase-dependent necroptosis, reduces ischemic brain injury. Neural Regen Res 13(2):252–256. https://doi.org/10.4103/1673-5374.226394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO, Fisher A, Lane R et al (2020) Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580(7803):391–395. https://doi.org/10.1038/s41586-020-2129-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptorinteracting kinase-3-mediated pathway. Proc Natl Acad Sci USA 108(50):20054–20059. https://doi.org/10.1073/pnas.1116302108

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288(43):31268–31279. https://doi.org/10.1074/jbc.M113.462341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P (2010) Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Cell Mol Life Sci 67(10):1567–1579. https://doi.org/10.1007/s00018-010-0283-0

    Article  CAS  PubMed  Google Scholar 

  17. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471(7340):591–596. https://doi.org/10.1038/nature09816

    Article  CAS  PubMed  Google Scholar 

  18. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296(5573):1634–1635

    Article  CAS  PubMed  Google Scholar 

  19. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190

    Article  CAS  PubMed  Google Scholar 

  20. Moquin DM, McQuade T, Chan FK-M (2013) CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 8(10):e76841. https://doi.org/10.1371/journal.pone.0076841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Justus SJ, Ting AT (2015) Cloaked in ubiquitin, a killer hides in plain sight: the molecular regulation of RIPK1. Immunol Rev 266(1):145–160. https://doi.org/10.1111/imr.12304

    Article  CAS  PubMed  Google Scholar 

  22. Feng S, Yang Y, Mei Y, Ma L, Zhu D-e, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspaseindependent apoptosis pathway by removal of kinase domain. Cell Signal 19(10):2056–2067

    Article  CAS  PubMed  Google Scholar 

  23. Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, Kőműves L, Webster JD et al (2019) Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574(7778):428–431. https://doi.org/10.1038/s41586-019-1548-x

    Article  CAS  PubMed  Google Scholar 

  24. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK-M (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. https://doi.org/10.1016/j.cell.2009.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1-2):213–227. https://doi.org/10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  26. Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, Pierotti C, Garnier J-M et al (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA 111(42):15072–15077. https://doi.org/10.1073/pnas.1408987111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai Z, Jitkaew S, Zhao J, Chiang H-C, Choksi S, Liu J, Ward Y, Wu L-G et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65. https://doi.org/10.1038/ncb2883

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Li W, Ren J, Huang D, He W-T, Song Y, Yang C, Li W et al (2014) Translocation of mixed lineage kinase domainlike protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121. https://doi.org/10.1038/cr.2013.171

    Article  CAS  PubMed  Google Scholar 

  29. Vandenabeele P, Bultynck G, Savvides SN (2023) Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 24(5):312–333. https://doi.org/10.1038/s41580-022-00564-w

    Article  CAS  PubMed  Google Scholar 

  30. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang J-G, Alvarez-Diaz S, Lewis R, Lalaoui N et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453. https://doi.org/10.1016/j.immuni.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  31. Grootjans S, Vanden Berghe T, Vandenabeele P (2017) Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ 24(7):1184–1195. https://doi.org/10.1038/cdd.2017.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng M, Karki R, Vogel P, Kanneganti T-D (2020) Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181(3). https://doi.org/10.1016/j.cell.2020.03.040

  33. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714. https://doi.org/10.1038/nrm2970

    Article  CAS  PubMed  Google Scholar 

  34. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321. https://doi.org/10.1038/nchembio.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, Fernández-López A, Duarte CB et al (2014) Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis 68:26–36. https://doi.org/10.1016/j.nbd.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  36. Yang J, Zhao Y, Zhang L, Fan H, Qi C, Zhang K, Liu X, Fei L et al (2018) RIPK3/MLKL-mediated neuronal necroptosis modulates the M1/M2 polarization of microglia/macrophages in the ischemic cortex. Cereb Cortex 28(7):2622–2635. https://doi.org/10.1093/cercor/bhy089

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miao W, Qu Z, Shi K, Zhang D, Zong Y, Zhang G, Zhang G, Hu S (2015) RIP3 S-nitrosylation contributes to cerebral ischemic neuronal injury. Brain Res 1627:165–176. https://doi.org/10.1016/j.brainres.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  38. Kulkarni B, Cruz-Martins N, Kumar D (2022) Microglia in Alzheimer’s disease: an unprecedented opportunity as prospective drug target. Mol Neurobiol 59(5):2678–2693. https://doi.org/10.1007/s12035-021-02661-x

    Article  CAS  PubMed  Google Scholar 

  39. Chen A-Q, Fang Z, Chen X-L, Yang S, Zhou Y-F, Mao L, Xia Y-P, Jin H-J et al (2019) Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 10(7):487. https://doi.org/10.1038/s41419-019-1716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu L, Hu B (2017a) Diverse functions and mechanisms of pericytes in ischemic stroke. Curr Neuropharmacol 15(6):892–905. https://doi.org/10.2174/1570159X15666170112170226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 14(7):461–471. https://doi.org/10.1038/nrn3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiong Z-G, Zhu X-M, Chu X-P, Minami M, Hey J, Wei W-L, MacDonald JF, Wemmie JA et al (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118(6):687–698

    Article  CAS  PubMed  Google Scholar 

  43. Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29(10):578–586

    Article  CAS  PubMed  Google Scholar 

  44. Gao J, Duan B, Wang D-G, Deng X-H, Zhang G-Y, Xu L, Xu T-L (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48(4):635–646

    Article  CAS  PubMed  Google Scholar 

  45. Pignataro G, Simon RP, Xiong Z-G (2007) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain 130(Pt 1):151–158

    PubMed  Google Scholar 

  46. Wang Y-Z, Wang J-J, Huang Y, Liu F, Zeng W-Z, Li Y, Xiong Z-G, Zhu MX et al (2015) Tissue acidosis induces neuronal necroptosis via ASIC1a channel independent of its ionic conduction. Elife 4. https://doi.org/10.7554/eLife.05682

  47. Wang J-J, Liu F, Yang F, Wang Y-Z, Qi X, Li Y, Hu Q, Zhu MX et al (2020) Disruption of auto-inhibition underlies conformational signaling of ASIC1a to induce neuronal necroptosis. Nat Commun 11(1):475. https://doi.org/10.1038/s41467-019-13873-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fearns C, Pan Q, Mathison JC, Chuang T-H (2006) Triad3A regulates ubiquitination and proteasomal degradation of RIP1 following disruption of Hsp90 binding. J Biol Chem 281(45):34592–34600

    Article  CAS  PubMed  Google Scholar 

  49. Alturki NA, McComb S, Ariana A, Rijal D, Korneluk RG, Sun S-C, Alnemri E, Sad S (2018) Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis. Cell Death Dis 9(6):592. https://doi.org/10.1038/s41419-018-0672-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan Z, Yi-Yun S, Hai-Yan Y (2020) Triad3A displays a critical role in suppression of cerebral ischemic/reperfusion (I/R) injury by regulating necroptosis. Biomed Pharmacother 128:110045. https://doi.org/10.1016/j.biopha.2020.110045

    Article  CAS  PubMed  Google Scholar 

  51. Yang S, Wang B, Tang LS, Siednienko J, Callanan JJ, Moynagh PN (2013) Pellino3 targets RIP1 and regulates the pro-apoptotic effects of TNF-α. Nat Commun 4:2583. https://doi.org/10.1038/ncomms3583

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y-Y, Tian J, Peng Z-M, Liu B, Peng Y-W, Zhang X-J, Hu Z-Y, Luo X-J, Peng J (2023) Caspofungin suppresses brain cell necroptosis in ischemic stroke rats via up-regulation of pellino3. Cardiovasc Drugs Ther 37(1). https://doi.org/10.1007/s10557-021-07231-w

  53. Trendelenburg G, Dirnagl U (2005) Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 50(4):307–320. https://doi.org/10.1002/glia.20204

    Article  PubMed  Google Scholar 

  54. Upadhya R, Zingg W, Shetty S, Shetty AK (2020) Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Release 323:225–239. https://doi.org/10.1016/j.jconrel.2020.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu J, Yang L-K, Wang Q-H, Lin W, Feng Y, Xu Y-P, Chen W-L, Xiong K, Wang Y-H (2020) NDRG2 attenuates ischemia-induced astrocyte necroptosis via the repression of RIPK1. Mol Med Rep 22(4):3103–3110. https://doi.org/10.3892/mmr.2020.11421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takarada-Iemata M, Yoshikawa A, Ta HM, Okitani N, Nishiuchi T, Aida Y, Kamide T, Hattori T, Ishii H, Tamatani T, Le TM, Roboon J, Kitao Y, Matsuyama T, Nakada M, Hori O (2018) N-myc downstream-regulated gene 2 protects blood-brain barrier integrity following cerebral ischemia. Glia 66(7):1432–1446. https://doi.org/10.1002/glia.23315

    Article  PubMed  Google Scholar 

  57. Feng T, Han B-H, Yang G-L, Shi C-J, Gao Z-W, Cao M-Z, Zhu X-L (2019) Neuroprotective influence of miR-301a inhibition in experimental cerebral ischemia/reperfusion rat models through targeting NDRG2. J Mol Neurosci 68(1):144–152. https://doi.org/10.1007/s12031-019-01293-0

    Article  CAS  PubMed  Google Scholar 

  58. Yin A, Guo H, Tao L, Cai G, Wang Y, Yao L, Xiong L, Zhang J, Li Y (2020) NDRG2 protects the brain from excitotoxicity by facilitating interstitial glutamate uptake. Transl Stroke Res 11(2):214–227. https://doi.org/10.1007/s12975-019-00708-9

    Article  CAS  PubMed  Google Scholar 

  59. Anfinogenova ND, Quinn MT, Schepetkin IA, Atochin DN (2020) Alarmins and c-Jun N-terminal kinase (JNK) signaling in neuroinflammation. Cells 9(11). https://doi.org/10.3390/cells9112350

  60. Hu W, Wu X, Yu D, Zhao L, Zhu X, Li X, Huang T, Chu Z, Xu Y (2020) Regulation of JNK signaling pathway and RIPK3/AIF in necroptosis-mediated global cerebral ischemia/reperfusion injury in rats. Exp Neurol 331:113374. https://doi.org/10.1016/j.expneurol.2020.113374

    Article  CAS  PubMed  Google Scholar 

  61. Chen R, Kang R, Tang D (2022a) The mechanism of HMGB1 secretion and release. Exp Mol Med 54(2). https://doi.org/10.1038/s12276-022-00736-w

  62. Liu K, Mori S, Takahashi HK, Tomono Y, Wake H, Kanke T, Sato Y, Hiraga N, Adachi N, Yoshino T, Nishibori M (2007) Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J 21(14):3904–3916

    Article  CAS  PubMed  Google Scholar 

  63. Yang Q-W, Xiang J, Zhou Y, Zhong Q, Li J-C (2010) Targeting HMGB1/TLR4 signaling as a novel approach to treatment of cerebral ischemia. Front Biosci (Schol Ed) 2(3):1081–1091

    Article  PubMed  Google Scholar 

  64. Yang M, Lv Y, Tian X, Lou J, An R, Zhang Q, Li M, Xu L, Dong Z (2017b) Neuroprotective effect of β-caryophyllene on cerebral ischemia-reperfusion injury via regulation of necroptotic neuronal death and inflammation: in vivo and in vitro. Front Neurosci 11:583. https://doi.org/10.3389/fnins.2017.00583

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yawoot N, Chumboatong W, Sengking J, Tocharus C, Tocharus J (2022) Chronic high-fat diet consumption exacerbates pyroptosis- and necroptosis-mediated HMGB1 signaling in the brain after ischemia and reperfusion injury. J Physiol Biochem. https://doi.org/10.1007/s13105-022-00906-4

  66. Wei R, Bao W, He F, Meng F, Liang H, Luo B (2020) Pannexin1 channel inhibitor (10panx) protects against transient focal cerebral ischemic injury by inhibiting RIP3 expression and inflammatory response in rats. Neuroscience 437:23–33. https://doi.org/10.1016/j.neuroscience.2020.02.042

    Article  CAS  PubMed  Google Scholar 

  67. Tombes RM, Faison MO, Turbeville JM (2003) Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes. Gene 322:17–31

    Article  CAS  PubMed  Google Scholar 

  68. Singh MV, Kapoun A, Higgins L, Kutschke W, Thurman JM, Zhang R, Singh M, Yang J, Guan X, Lowe JS, Weiss RM, Zimmermann K, Yull FE, Blackwell TS, Mohler PJ, Anderson ME (2009) Ca2+/calmodulin-dependent kinase II triggers cell membrane injury by inducing complement factor B gene expression in the mouse heart. J Clin Invest 119(4):986–996. https://doi.org/10.1172/JCI35814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao C-M, Xiao R-P (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22(2):175–182. https://doi.org/10.1038/nm.4017

    Article  CAS  PubMed  Google Scholar 

  70. de Pins B, Mendes T, Giralt A, Girault J-A (2021) The non-receptor tyrosine kinase Pyk2 in brain function and neurological and psychiatric diseases. Front Synaptic Neurosci 13:749001. https://doi.org/10.3389/fnsyn.2021.749001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang B, Ma L, Liu L, Qin J, Li T, Bu K, Li Z, Lu H, Song X, Cao Y, Cui J, Wang Q, Yuan S, Liu X, Guo L (2022) Receptor-interacting protein 3/calmodulin-dependent kinase II/proline-rich tyrosine kinase 2 pathway is involved in programmed cell death in a mouse model of brain ischaemic stroke. Neuroscience 506:14–28. https://doi.org/10.1016/j.neuroscience.2022.09.009

    Article  CAS  PubMed  Google Scholar 

  72. Zhan L, Lu Z, Zhu X, Xu W, Li L, Li X, Chen S, Sun W, Xu E (2019) Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIα inactivation in adult rats. FASEB J 33(1):1313–1329. https://doi.org/10.1096/fj.201800111RR

    Article  CAS  PubMed  Google Scholar 

  73. Seo J, Lee E-W, Sung H, Seong D, Dondelinger Y, Shin J, Jeong M, Lee H-K, Kim J-H, Han SY, Lee C, Seong JK, Vandenabeele P, Song J (2016) CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol 18(3):291–302. https://doi.org/10.1038/ncb3314

    Article  CAS  PubMed  Google Scholar 

  74. Choi S-W, Park H-H, Kim S, Chung JM, Noh H-J, Kim SK, Song HK, Lee C-W, Morgan MJ, Kang HC, Kim Y-S (2018) PELI1 selectively targets kinase-active rip3 for ubiquitylation- dependent proteasomal degradation. Mol Cell 70(5). https://doi.org/10.1016/j.molcel.2018.05.016

  75. Yao D, Zhang S, Hu Z, Luo H, Mao C, Fan Y, Tang M, Liu F, Shen S, Fan L, Li M, Shi J, Li J, Ma D, Xu Y, Shi C (2021) CHIP ameliorates cerebral ischemia-reperfusion injury by attenuating necroptosis and inflammation. Aging (Albany NY) 13(23):25564–25577. https://doi.org/10.18632/aging.203774

    Article  CAS  PubMed  Google Scholar 

  76. Tang M-B, Li Y-S, Li S-H, Cheng Y, Zhang S, Luo H-Y, Mao C-Y, Hu Z-W, Schisler JC, Shi C-H, Xu Y-M (2018) Anisomycin prevents OGD-induced necroptosis by regulating the E3 ligase CHIP. Sci Rep 8(1):6379. https://doi.org/10.1038/s41598-018-24414-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang CK, He SD (2016) Heat shock protein 90 regulates necroptosis by modulating multiple signaling effectors. Cell Death Dis 7(3):e2126. https://doi.org/10.1038/cddis.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao XM, Chen Z, Zhao JB, Zhang PP, Pu YF, Jiang SH, Hou JJ, Cui YM, Jia XL, Zhang SQ (2016a) Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis 7(2):e2089. https://doi.org/10.1038/cddis.2015.390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu X-Q, Liu M-M, Jiang L, Gao L, Zhang Y, Huang Y-B, Wang X, Zhu W, Zeng H-X, Meng X-M, Wu Y-G (2022) A novel small molecule Hsp90 inhibitor, C-316-1, attenuates acute kidney injury by suppressing RIPK1-mediated inflammation and necroptosis. Int Immunopharmacol 108:108849. https://doi.org/10.1016/j.intimp.2022.108849

    Article  CAS  PubMed  Google Scholar 

  80. Wang Z, Guo L-M, Wang Y, Zhou H-K, Wang S-C, Chen D, Huang J-F, Xiong K (2018) Inhibition of HSP90α protects cultured neurons from oxygen-glucose deprivation induced necroptosis by decreasing RIP3 expression. J Cell Physiol 233(6):4864–4884. https://doi.org/10.1002/jcp.26294

    Article  CAS  PubMed  Google Scholar 

  81. Chu X, Wu X, Feng H, Zhao H, Tan Y, Wang L, Ran H, Yi L, Peng Y, Tong H, Liu R, Bai W, Shi H, Li L, Huo D (2018) Coupling between interleukin-1R1 and necrosome complex involves in hemin-induced neuronal necroptosis after intracranial hemorrhage. Stroke 49(10):2473–2482. https://doi.org/10.1161/STROKEAHA.117.019253

    Article  CAS  PubMed  Google Scholar 

  82. Zhan L, Lu X, Xu W, Sun W, Xu E (2021) Inhibition of MLKL-dependent necroptosis via downregulating interleukin-1R1 contributes to neuroprotection of hypoxic preconditioning in transient global cerebral ischemic rats. J Neuroinflammation 18(1):97. https://doi.org/10.1186/s12974-021-02141-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Karl I, Jossberger-Werner M, Schmidt N, Horn S, Goebeler M, Leverkus M, Wajant H, Giner T (2014) TRAF2 inhibits TRAIL- and CD95L-induced apoptosis and necroptosis. Cell Death Dis 5(10):e1444. https://doi.org/10.1038/cddis.2014.404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Petersen SL, Chen TT, Lawrence DA, Marsters SA, Gonzalvez F, Ashkenazi A (2015) TRAF2 is a biologically important necroptosis suppressor. Cell Death Differ 22(11):1846–1857. https://doi.org/10.1038/cdd.2015.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Demeyer A, Staal J, Beyaert R (2016) Targeting MALT1 proteolytic activity in immunity, inflammation and disease: Good or bad? Trends Mol Med 22(2):135–150. https://doi.org/10.1016/j.molmed.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  86. Onizawa M, Oshima S, Schulze-Topphoff U, Oses-Prieto JA, Lu T, Tavares R, Prodhomme T, Duong B, Whang MI, Advincula R, Agelidis A, Barrera J, Wu H, Burlingame A, Malynn BA, Zamvil SS, Ma A (2015) The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat Immunol 16(6):618–627. https://doi.org/10.1038/ni.3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen X, Zhang X, Lan L, Xu G, Li Y, Huang S (2021) MALT1 positively correlates with Th1 cells, Th17 cells, and their secreted cytokines and also relates to disease risk, severity, and prognosis of acute ischemic stroke. J Clin Lab Anal 35(9):e23903. https://doi.org/10.1002/jcla.23903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Peng Z-M, Zhang Y-Y, Wei D, Zhang X-J, Liu B, Peng J, Luo X-J (2023) MALT1 promotes necroptosis in stroke rat brain via targeting the A20/RIPK3 pathway. Arch Biochem Biophys 735:109502. https://doi.org/10.1016/j.abb.2023.109502

    Article  CAS  PubMed  Google Scholar 

  89. Vahsen N, Candé C, Brière J-J, Bénit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23(23):4679–4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Artus C, Boujrad H, Bouharrour A, Brunelle M-N, Hoos S, Yuste VJ, Lenormand P, Rousselle J-C, Namane A, England P, Lorenzo HK, Susin SA (2010) AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. EMBO J 29(9):1585–1599. https://doi.org/10.1038/emboj.2010.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu Y, Wang J, Song X, Qu L, Wei R, He F, Wang K, Luo B (2016a) RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Sci Rep 6:29362. https://doi.org/10.1038/srep29362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jiao F, Gong Z (2020) The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid Med Cell Longev 2020:6782872. https://doi.org/10.1155/2020/6782872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Le K, Chibaatar Daliv E, Wu S, Qian F, Ali AI, Yu D, Guo Y (2019) SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: A possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury. Int Immunopharmacol 75:105779. https://doi.org/10.1016/j.intimp.2019.105779

    Article  CAS  PubMed  Google Scholar 

  94. Zhou D, Zhang M, Min L, Jiang K, Jiang Y (2020) Cerebral ischemia-reperfusion is modulated by macrophage-stimulating 1 through the MAPK-ERK signaling pathway. J Cell Physiol 235(10):7067–7080. https://doi.org/10.1002/jcp.29603

    Article  CAS  PubMed  Google Scholar 

  95. Li Z, Zhao M, Zhang X, Lu Y, Yang Y, Xie Y, Zou Z, Zhou L, Shang R, Zhang L, Jiang F, Du D, Zhou P (2022) TJM2010-5, a novel CNS drug candidate, attenuates acute cerebral ischemia- reperfusion injury through the MyD88/NF-κB and ERK pathway. Front Pharmacol 13:1080438. https://doi.org/10.3389/fphar.2022.1080438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang W-Y, Shi J-X, Chen M-H, Zhuge X-Z, Dai C-G, Xie L (2023) Calpain inhibitor MDL28170 alleviates cerebral ischemia-reperfusion injury by suppressing inflammation and autophagy in a rat model of cardiac arrest. Exp Ther Med 25(5):196. https://doi.org/10.3892/etm.2023.11895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hong SC, Goto Y, Lanzino G, Soleau S, Kassell NF, Lee KS (1994) Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25(3):663–669

    Article  CAS  PubMed  Google Scholar 

  98. Wang W-Y, Xie L, Zou X-S, Li N, Yang Y-G, Wu Z-J, Tian X-Y, Zhao G-Y, Chen M-H (2021a) Inhibition of extracellular signal-regulated kinase/calpain-2 pathway reduces neuroinflammation and necroptosis after cerebral ischemia-reperfusion injury in a rat model of cardiac arrest. Int Immunopharmacol 93:107377. https://doi.org/10.1016/j.intimp.2021.107377

    Article  CAS  PubMed  Google Scholar 

  99. Xie Z, Zhao M, Yan C, Kong W, Lan F, Narengaowa ZS, Yang Q, Bai Z, Qing H, Ni J (2023) Cathepsin B in programmed cell death machinery: mechanisms of execution and regulatory pathways. Cell Death Dis 14(4):255. https://doi.org/10.1038/s41419-023-05786-0

    Article  PubMed  PubMed Central  Google Scholar 

  100. Mulay SR, Honarpisheh MM, Foresto-Neto O, Shi C, Desai J, Zhao ZB, Marschner JA, Popper B, Buhl EM, Boor P, Linkermann A, Liapis H, Bilyy R, Herrmann M, Romagnani P, Belevich I, Jokitalo E, Becker JU, Anders H-J (2019) Mitochondria permeability transition versus necroptosis in oxalate-induced AKI. J Am Soc Nephrol 30(10):1857–1869. https://doi.org/10.1681/ASN.2018121218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang J-Y, Xia Q, Chu K-T, Pan J, Sun L-N, Zeng B, Zhu Y-J, Wang Q, Wang K, Luo B-Y (2011) Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 70(4):314–322. https://doi.org/10.1097/NEN.0b013e31821352bd

    Article  CAS  PubMed  Google Scholar 

  102. Kilinc M, Gürsoy-Ozdemir Y, Gürer G, Erdener SE, Erdemli E, Can A, Dalkara T (2010) Lysosomal rupture, necroapoptotic interactions and potential crosstalk between cysteine proteases in neurons shortly after focal ischemia. Neurobiol Dis 40(1):293–302. https://doi.org/10.1016/j.nbd.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  103. Xu Y, Wang J, Song X, Wei R, He F, Peng G, Luo B (2016b) Protective mechanisms of CA074- me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull 120. https://doi.org/10.1016/j.brainresbull.2015.11.007

  104. Zhao M, Zhu P, Fujino M, Zhuang J, Guo H, Sheikh I, Zhao L, Li X-K (2016b) Oxidative stress in hypoxic-ischemic encephalopathy: molecular mechanisms and therapeutic strategies. Int J Mol Sci 17(12)

  105. Orellana-Urzúa S, Rojas I, Líbano L, Rodrigo R (2020) Pathophysiology of ischemic stroke: role of oxidative stress. Curr Pharm Des 26(34):4246–4260. https://doi.org/10.2174/1381612826666200708133912

    Article  CAS  PubMed  Google Scholar 

  106. Deragon MA, McCaig WD, Patel PS, Haluska RJ, Hodges AL, Sosunov SA, Murphy MP, Ten VS et al (2020) Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necrop- tosis. Cell Death Discov 6(1):132. https://doi.org/10.1038/s41420-020-00370-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McCaig WD, Patel PS, Sosunov SA, Shakerley NL, Smiraglia TA, Craft MM, Walker KM, Deragon MA et al (2018) Hyper- glycemia potentiates a shift from apoptosis to RIP1-dependent necroptosis. Cell Death Discov 4:55. https://doi.org/10.1038/s41420-018-0058-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang Q, Sun M, Li M, Zhang D, Han F, Wu JC, Fukunaga K, Chen Z et al (2018) Combination of NAD+ and NADPH offers greater neuroprotection in ischemic stroke models by relieving metabolic stress. Mol Neurobiol 55(7):6063–6075. https://doi.org/10.1007/s12035-017-0809-7

    Article  CAS  PubMed  Google Scholar 

  109. Rhinn H, Tatton N, McCaughey S, Kurnellas M, Rosenthal A (2022) Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol Sci 43(8):641–652. https://doi.org/10.1016/j.tips.2021.11.015

    Article  CAS  PubMed  Google Scholar 

  110. Li X, Cheng S, Hu H, Zhang X, Xu J, Wang R, Zhang P (2020) Progranulin protects against cerebral ischemia-reperfusion (I/R) injury by inhibiting necroptosis and oxidative stress. Biochem Biophys Res Commun 521(3):569–576. https://doi.org/10.1016/j.bbrc.2019.09.111

    Article  CAS  PubMed  Google Scholar 

  111. LaRocca TJ, Sosunov SA, Shakerley NL, Ten VS, Ratner AJ (2016) Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J Biol Chem 291(26):13753–13761. https://doi.org/10.1074/jbc.M116.716027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Teng X, Chen W, Liu Z, Feng T, Li H, Ding S, Chen Y, Zhang Y et al (2018) NLRP3 inflammasome is involved in Q-VD-OPH induced necroptosis following cerebral ischemia-reper- fusion injury. Neurochem Res 43(6):1200–1209. https://doi.org/10.1007/s11064-018-2537-4

    Article  CAS  PubMed  Google Scholar 

  113. Chen W, Teng X, Ding H, Xie Z, Cheng P, Liu Z, Feng T, Zhang X et al (2022b) Nrf2 protects against cerebral ischemia-reperfusion injury by suppressing programmed necrosis and inflammatory signaling pathways. Ann Transl Med 10(6):285. https://doi.org/10.21037/atm-22-604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mitroshina EV, Loginova MM, Yarkov RS, Urazov MD, Novo-zhilova MO, Krivonosov MI, Ivanchenko MV, Vedunova MV (2022) Inhibition of neuronal necroptosis mediated by RIPK1 provides neuroprotective effects on hypoxia and ischemia in vitro and in vivo. Int J Mol Sci 23(2). https://doi.org/10.3390/ijms23020735

  115. Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R et al (2012) Necrosta- tin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3(11):e437. https://doi.org/10.1038/cddis.2012.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Berger SB, Harris P, Nagilla R, Kasparcova V, Hoffman S, Swift B, Dare L, Schaeffer M et al (2015) Characterization of GSK'963: a structurally distinct, potent and selective inhibitor of RIP1 kinase. Cell Death Discov 1:15009. https://doi.org/10.1038/cddiscovery.2015.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang C, Guan Q, Shi H, Cao L, Liu J, Gao Z, Zhu W, Yang Y et al (2021) A novel RIP1/RIP3 dual inhibitor promoted OPC survival and myelination in a rat neonatal white matter injury model with hOPC graft. Stem Cell Res Ther 12(1):462. https://doi.org/10.1186/s13287-021-02532-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li W, Liu J, Chen J-R, Zhu Y-M, Gao X, Ni Y, Lin B, Li H et al (2018) Neuroprotective effects of DTIO, a novel analog of Nec-1, in acute and chronic stages after ischemic stroke. Neuroscience 390:12–29. https://doi.org/10.1016/j.neuroscience.2018.07.044

    Article  CAS  PubMed  Google Scholar 

  119. Weilinger NL, Tang PL, Thompson RJ (2012) Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J Neurosci 32(36):12579–12588. https://doi.org/10.1523/JNEUROSCI.1267-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Adamiak M, Ciechanowicz A, Skoda M, Cymer M, Tracz M, Xu B, Ratajczak MZ (2020) Novel evidence that purinergic signaling-Nlrp3 inflammasome axis regulates circadian rhythm of hematopoietic stem/progenitor cells circulation in peripheral blood. Stem Cell Rev Rep 16(2):335–343. https://doi.org/10.1007/s12015-020-09953-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fulda S (2018) Repurposing anticancer drugs for targeting necroptosis. Cell Cycle 17(7):829–832. https://doi.org/10.1080/15384101.2018.1442626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li JX, Feng JM, Wang Y, Li XH, Chen XX, Su Y, Shen YY, Chen Y et al (2014) The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis 5:e1278. https://doi.org/10.1038/cddis.2014.241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fauster A, Rebsamen M, Huber KVM, Bigenzahn JW, Stukalov A, Lardeau CH, Scorzoni S, Bruckner M, Gridling M, Parapatics K, Colinge J, Bennett KL, Kubicek S, Krautwald S, Linkermann A, Superti-Furga G (2015) A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis 6:e1767. https://doi.org/10.1038/cddis.2015.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tian J, Guo S, Chen H, Peng J-J, Jia M-M, Li N-S, Zhang X-J, Yang J et al (2018) Combination of emricasan with ponatinib synergistically reduces ischemia/reperfusion injury in rat brain through simultaneous prevention of apoptosis and necropto- sis. Transl Stroke Res 9(4):382–392. https://doi.org/10.1007/s12975-017-0581-z

    Article  CAS  PubMed  Google Scholar 

  125. Zhang Y-Y, Liu W-N, Li Y-Q, Zhang X-J, Yang J, Luo X-J, Peng J (2019) Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL path- way. Naunyn Schmiedebergs Arch Pharmacol 392(9):1085–1095. https://doi.org/10.1007/s00210-019-01656-9

    Article  CAS  PubMed  Google Scholar 

  126. Dong C, Li J, Zhao M, Chen L, Zhai X, Song L, Zhao J, Sun Q et al (2022) Pharmacological effect of panax notoginseng saponins on cerebral ischemia in animal models. Biomed Res Int 2022:4281483. https://doi.org/10.1155/2022/4281483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hu Y, Lei H, Zhang S, Ma J, Kang S, Wan L, Li F, Zhang F et al (2022a) Panax notoginseng saponins protect brain microvascular endothelial cells against oxygen-glucose deprivation/resupply-induced necroptosis via suppression of RIP1-RIP3-MLKL signaling pathway. Neurochem Res 47(11):3261–3271. https://doi.org/10.1007/s11064-022-03675-0

    Article  CAS  PubMed  Google Scholar 

  128. Tang B, She X, Deng C-Q (2021) Effect of the combination of astragaloside IV and Panax notoginseng saponins on pyroptosis and necroptosis in rat models of cerebral ischemia-reperfusion. Exp Ther Med 22(4):1123. https://doi.org/10.3892/etm.2021.10557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Horváth B, Mukhopadhyay P, Kechrid M, Patel V, Tanchian G, Wink DA, Gertsch J, Pacher P (2012) β-Caryophyllene amelio- rates cisplatin-induced nephrotoxicity in a cannabinoid 2 recep- tor-dependent manner. Free Radic Biol Med 52(8):1325–1333. https://doi.org/10.1016/j.freeradbiomed.2012.01.0146

    Article  PubMed  PubMed Central  Google Scholar 

  130. Chang H-J, Kim J-M, Lee J-C, Kim W-K, Chun HS (2013) Pro- tective effect of β-caryophyllene, a natural bicyclic sesquiterpene, against cerebral ischemic injury. J Med Food 16(6):471–480. https://doi.org/10.1089/jmf.2012.2283

    Article  CAS  PubMed  Google Scholar 

  131. Tian X, Peng J, Zhong J, Yang M, Pang J, Lou J, Li M, An R et al (2016) β-Caryophyllene protects in vitro neurovascular unit against oxygen-glucose deprivation and re-oxygenation-induced injury. J Neurochem 139(5):757–768. https://doi.org/10.1111/jnc.13833

    Article  CAS  PubMed  Google Scholar 

  132. Hu W, Chen M, Wang W, Huang F, Tian X, Xie L (2022b) Pomelo peel essential oil ameliorates cerebral ischemia-reperfusion injury through regulating redox homeostasis in rats and SH-SY5Y cells. Oxid Med Cell Longev 2022:8279851. https://doi.org/10.1155/2022/8279851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang W, Xie L, Zou X, Hu W, Tian X, Zhao G, Chen M (2021b) Pomelo peel oil suppresses TNF-α-induced necroptosis and cerebral ischaemia-reperfusion injury in a rat model of cardiac arrest. Pharm Biol 59(1):401–409. https://doi.org/10.1080/13880209.2021.1903046

    Article  CAS  PubMed  Google Scholar 

  134. Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, Giacobbe DR, Viscoli C, Giamarellou H, Karaiskos I, Kaye D, Mouton JW, Tam VH, Thamlikitkul V, Wunderink RG, Li J, Nation RL, Kaye KS (2019) International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 39(1):10–39. https://doi.org/10.1002/phar.2209

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tian J, Zhang Y-Y, Peng Y-W, Liu B, Zhang X-J, Hu Z-Y, Hu C-P, Luo X-J, Peng J (2022) Polymyxin B reduces brain injury in ischemic stroke rat through a mechanism involving targeting ESCRT-III machinery and RIPK1/RIPK3/MLKL pathway. J Cardiovasc Transl Res 15(5):1129–1142. https://doi.org/10.1007/s12265-022-10224-1

    Article  PubMed  Google Scholar 

  136. Gong Y-N, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, Linkermann A, Green DR (2017) ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169(2). https://doi.org/10.1016/j.cell.2017.03.020

  137. Fang Z, Wu D, Deng J, Yang Q, Zhang X, Chen J, Wang S, Hu S, Hou W, Ning S, Ding Y, Fan Z, Jiang Z, Kang J, Liu Y, Miao J, Ji X, Dong H, Xiong L (2021) An MD2-perturbing peptide has therapeutic effects in rodent and rhesus monkey models of stroke. Sci Transl Med 13(597). https://doi.org/10.1126/scitranslmed.abb6716

Download references

Acknowledgements

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by grants from Key Research and Development Program of Ningxia (No.2022BFH02012); National Natural Science Foundation of China (No.32170748); Shanghai Committee of Science and Technology (No. 21490714300); and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Zhen C. had the idea for the review article; Qing W., Fan Y., Kun D., Yue L., Jian Y. and Qi W. performed the literature search; Qing W., Fan Y. and Kun D. drafted the manuscript; Zhen C. critically revised the manuscript.

Corresponding author

Correspondence to Zhenyu Cai.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the final manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yang, F., Duo, K. et al. The Role of Necroptosis in Cerebral Ischemic Stroke. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03728-7

Keywords

Navigation