Skip to main content
Log in

Reduced Expression of the Htr2a, Grin1, and Bdnf Genes and Cognitive Inflexibility in a Model of High Compulsive Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Compulsivity is a core symptom in different psychopathological disorders, characterized by excessive behaviors and behavioral inflexibility. The selection of high drinker (HD) versus low drinker (LD) rats by schedule-induced polydipsia (SIP) is a valid model for studying the compulsive phenotype. The compulsive HD rats showed cognitive inflexibility and reduced serotonin 2A (5-HT2A) receptor binding levels in the frontal cortex (FC). According to that, we hypothesize that compulsive HD rats might have an alteration in the cognitive control domain regarding inflexibility, assessed by spatial memory on the Morris Water Maze (MWM), working and reference memory by the Radial Arm Maze, and behavioral deficits in stimulus processing by the Novel Object Recognition test. The possible underlying mechanisms might be linked to the brain gene expression of 5HT2A, 5HT2C, glutamate NMDA receptors, and brain-derived neurotrophic factor (BDNF) in FC, hippocampus, and amygdala. HD rats confirmed a cognitive inflexibility profile on the reversal condition in the MWM compared to LD rats, while no differences were observed on stimulus processing, spatial, and working memory. Moreover, HD rats showed a reduced expression of the Htr2a, Grin1, and Bdnf genes in FC. Furthermore, there was a negative correlation between the relative expression of the Htr2a, Grin1, and Bdnf genes in FC and the level of compulsive water intake in HD rats on SIP. These data reveal that cognitive inflexibility may not be associated with a memory or stimulus processing deficit in compulsive individuals but may result by a region-specific alteration of the Htr2a, Grin1, and Bdnf gene expression in FC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Robbins TW, Vaghi MM, Banca P (2019) Obsessive-compulsive disorder: puzzles and prospects. Neuron 102:27–47

    Article  PubMed  CAS  Google Scholar 

  2. WHO | World Health Organization. WHO [Internet]. 2018 [cited 2019 Jan 22]; https://www.who.int/gho/mortality_burden_disease/en/

  3. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Association https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596

    Book  Google Scholar 

  4. Benzina N, Mallet L, Burguière E, N’Diaye K, Pelissolo A (2016) Cognitive dysfunction in obsessive-compulsive disorder. Curr Psychiatry Rep 18(9):80. https://doi.org/10.1007/s11920-016-0720-3

    Article  PubMed  Google Scholar 

  5. Geller DA, McGuire JF, Orr SP, Pine DS, Britton JC, Small BJ et al (2017) Fear conditioning and extinction in pediatric obsessive-compulsive disorder. Ann Clin Psychiatry 29(1):17–26 http://www.ncbi.nlm.nih.gov/pubmed/28207912

    PubMed  PubMed Central  Google Scholar 

  6. Palit A, Roy PK, Saha PK (2022) Role of prospective memory in obsessive compulsive disorder. Indian J Psychol Med 44(6):586–591

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moreno M, Flores P (2012) Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases. Psychopharmacology 219(2):647–659. https://doi.org/10.1007/s00213-011-2570-3

    Article  PubMed  CAS  Google Scholar 

  8. Martín-González E, Olmedo-Córdoba M, Flores P, Moreno-Montoya M (2022) Differential neurobiological markers in phenotype-stratified rats modeling high or low vulnerability to compulsive behavior: a narrative review. Curr Neuropharmacol 21(9):1924–1933. https://pubmed.ncbi.nlm.nih.gov/36411566/

    Article  Google Scholar 

  9. Hawken ER, Beninger RJ (2014) The amphetamine sensitization model of schizophrenia symptoms and its effect on schedule-induced polydipsia in the rat. Psychopharmacology 231(9):2001–2008. https://doi.org/10.1007/s00213-013-3345-9

    Article  PubMed  CAS  Google Scholar 

  10. Ford MM (2014) Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype. Alcohol 48(3):265–276 http://www.ncbi.nlm.nih.gov/pubmed/24680665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fouyssac M, Puaud M, Ducret E, Marti-Prats L, Vanhille N, Ansquer S et al (2021) Environment-dependent behavioral traits and experiential factors shape addiction vulnerability. Eur J Neurosci 53(6):1794–1808. https://pubmed.ncbi.nlm.nih.gov/33332672/

    Article  PubMed  CAS  Google Scholar 

  12. Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective serotonin re- uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology 112(2–3):195–198 http://www.ncbi.nlm.nih.gov/pubmed/7871019

    Article  PubMed  CAS  Google Scholar 

  13. Falk J (1961) Production of polydipsia in normal rats by an intermittent food schedule. Science 133(3447):195–196 http://www.ncbi.nlm.nih.gov/pubmed/13698026

    Article  PubMed  CAS  Google Scholar 

  14. Navarro SV, Alvarez R, Colomina MT, Sanchez-Santed F, Flores P, Moreno M (2017) Behavioral biomarkers of schizophrenia in high drinker rats: a potential endophenotype of compulsive neuropsychiatric disorders. Schizophr Bull 43(4):778–787

    Article  PubMed  Google Scholar 

  15. Merchán A, Sánchez-Kuhn A, Prados-Pardo A, Gago B, Sánchez-Santed F, Moreno M et al (2019) Behavioral and biological markers for predicting compulsive-like drinking in schedule- induced polydipsia. Prog Neuropsychopharmacol Biol Psychiatry 93:149–160. https://pubmed.ncbi.nlm.nih.gov/30940483/

    Article  PubMed  Google Scholar 

  16. Moreno M, Gutiérrez-Ferre VE, Ruedas L, Campa L, Suñol C, Flores P (2012) Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology 219(2):661–672. https://doi.org/10.1007/s00213-011-2575-y

    Article  PubMed  CAS  Google Scholar 

  17. Prados-Pardo Á, Martín-González E, Mora S, Merchán A, Flores P, Moreno M (2019) Increased fear memory and glutamatergic modulation in compulsive drinker rats selected by schedule-induced polydipsia. Front Behav Neurosci 13:100. https://pubmed.ncbi.nlm.nih.gov/31133835/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Martín-González E, Olmedo-Córdoba M, Prados-Pardo Á, Cruz-Garzón DJ, Flores P, Mora S et al (2022) Socioemotional deficit and HPA axis time response in high compulsive rats selected by schedule-induced polydipsia. Horm Behav 142:105170. https://pubmed.ncbi.nlm.nih.gov/35367739/

    Article  PubMed  Google Scholar 

  19. Fineberg NA, Chamberlain SR, Goudriaan AE, Stein DJ, Vanderschuren LJMJ, Gillan CM et al (2014) New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr 19(01):69–89. https://www.cambridge.org/core/product/identifier/S1092852913000801/type/journal_article

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marinova Z, Chuang DM, Fineberg N (2017) Glutamate-modulating drugs as a potential therapeutic strategy in obsessive-compulsive disorder. Curr Neuropharmacol 15(7):977–995 http://www.ncbi.nlm.nih.gov/pubmed/28322166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Taylor S (2013) Molecular genetics of obsessive–compulsive disorder: a comprehensive meta- analysis of genetic association studies. Mol Psychiatry 18(7):799–805 http://www.nature.com/articles/mp201276

    Article  PubMed  CAS  Google Scholar 

  22. Rajendram R, Kronenberg S, Burton CL, Arnold PD (2017) Glutamate genetics in obsessive-compulsive disorder: a review. J Can Acad Child Adolesc Psychiatry 26(3):205–213. https://pubmed.ncbi.nlm.nih.gov/29056983/

    PubMed  PubMed Central  Google Scholar 

  23. Katerberg H, Lochner C, Cath DC, De Jonge P, Bochdanovits Z, Moolman-Smook JC et al (2009) The role of the brain-derived neurotrophic factor (BDNF) val66met variant in the phenotypic expression of obsessive-compulsive disorder (OCD). Am J Med Genet B Neuropsychiatr Genet 150B(8):1050–1062. https://pubmed.ncbi.nlm.nih.gov/19219856/

    Article  PubMed  CAS  Google Scholar 

  24. Taj MJRJ, Ganesh S, Shukla T, Deolankar S, Nadella RK, Sen S et al (2018) BDNF gene and obsessive compulsive disorder risk, symptom dimensions and treatment response. Asian J Psychiatr 38:65–69. https://pubmed.ncbi.nlm.nih.gov/29079096/

    Article  Google Scholar 

  25. Şimşek Ş, Gençoǧlan S, Yüksel T, Kaplan I, Alaca R (2016) Cortisol and brain-derived neurotrophic factor levels prior to treatment in children with obsessive-compulsive disorder. J Clin Psychiatry 77(7):e855–e859. https://pubmed.ncbi.nlm.nih.gov/27314567/

    Article  PubMed  Google Scholar 

  26. Wang Y, Mathews CA, Li Y, Lin Z, Xiao Z (2011) Brain-derived neurotrophic factor (BDNF) plasma levels in drug-naïve OCD patients are lower than those in healthy people, but are not lower than those in drug-treated OCD patients. J Affect Disord 133(1–2):305–310. https://pubmed.ncbi.nlm.nih.gov/21616543/

    Article  PubMed  CAS  Google Scholar 

  27. Mora S, Merchán A, Vilchez O, Aznar S, Klein AB, Ultved L et al (2018) Reduced cortical serotonin 5-HT2A receptor binding and glutamate activity in high compulsive drinker rats. Neuropharmacology 143:10. https://www.sciencedirect.com/science/article/pii/S0028390818306270?via%3Dihub

    Article  PubMed  CAS  Google Scholar 

  28. Navarro SV, Gutiérrez-ferre V, Flores P, Moreno M (2015) Activation of serotonin 5-HT2 A receptors inhibits high compulsive drinking on schedule-induced polydipsia. Psychopharmacology 232:683–697

    Article  PubMed  CAS  Google Scholar 

  29. Mora S, Merchán A, Aznar S, Flores P, Moreno M (2020) Increased amygdala and decreased hippocampus volume after schedule-induced polydipsia in high drinker compulsive rats. Behav Brain Res 390:112592. https://pubmed.ncbi.nlm.nih.gov/32417273/

    Article  PubMed  CAS  Google Scholar 

  30. Pittenger C (2013) Disorders of memory and plasticity in psychiatric disease. Dialogues Clin Neurosci 15(4):455–463. https://pubmed.ncbi.nlm.nih.gov/24459412/

    Article  PubMed  PubMed Central  Google Scholar 

  31. de Bruin JP, Sànchez-Santed F, Heinsbroek RP, Donker A, Postmes P (1994) A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res 652(2):323–333. https://doi.org/10.1016/0006-8993(94)90243-7

    Article  PubMed  Google Scholar 

  32. Fole A, Miguéns M, Morales L, González-Martín C, Ambrosio E, Del Olmo N (2017) Lewis and Fischer 344 rats as a model for genetic differences in spatial learning and memory: cocaine effects. Prog Neuropsychopharmacol Biol Psychiatry 76:49–57. https://doi.org/10.1016/j.pnpbp.2017.02.024

    Article  PubMed  CAS  Google Scholar 

  33. Cohen SJ, Stackman RW (2015) Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res 285:105–117. https://pubmed.ncbi.nlm.nih.gov/25169255/

    Article  PubMed  Google Scholar 

  34. Statistical power analysis for the behavioral sciences - Jacob Cohen - Google Libros https://books.google.es/books?hl=es&lr=&id=rEe0BQAAQBAJ&oi=fnd&pg=PP1&ots=sw_ZHtUPs9&sig=FB7Ht7UeZXro1MzjNUgzZ6Qu0K8&redir_esc=y#v=onepage&q&f=false

  35. Moreno-Montoya M, Olmedo-Córdoba M, Martín-González E (2022) Negative valence system as a relevant domain in compulsivity: review in a preclinical model of compulsivity. Emerg Top Life Sci 6(5):491–500. https://pubmed.ncbi.nlm.nih.gov/36377776/

    Article  PubMed  Google Scholar 

  36. Fyer AJ, Schneier FR, Simpson HB, Choo TH, Tacopina S, Kimeldorf MB et al (2020) Heterogeneity in fear processing across and within anxiety, eating, and compulsive disorders. J Affect Disord 275:329–338. https://pubmed.ncbi.nlm.nih.gov/32734926/

    Article  PubMed  PubMed Central  Google Scholar 

  37. Andersen SL, Greene-Colozzi EA, Sonntag KC (2010) A novel, multiple symptom model of obsessive-compulsive-like behaviors in animals. Biol Psychiatry 68(8):741–747. https://pubmed.ncbi.nlm.nih.gov/20619828/

    Article  PubMed  Google Scholar 

  38. Hajheidari S, Miladi-Gorji H, Bigdeli I (2017) Environmental enrichment prevents methamphetamine-induced spatial memory deficits and obsessive-compulsive behavior in rats. Iran J Psychiatry 12(1):8–14. https://pubmed.ncbi.nlm.nih.gov/28496496/

    PubMed  PubMed Central  Google Scholar 

  39. Seif T, Simms JA, Lei K, Wegner S, Bonci A, Messing RO et al (2015) D-serine and D-cycloserine reduce compulsive alcohol intake in rats. Neuropsychopharmacology 40(10):2357–2367 http://www.ncbi.nlm.nih.gov/pubmed/25801502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Exner C, Kohl A, Zaudig M, Langs G, Lincoln TM, Rief W (2009) Metacognition and episodic memory in obsessive-compulsive disorder. J Anxiety Disord 23(5):624–631

    Article  PubMed  Google Scholar 

  41. Martin V, Huber M, Rief W, Exner C (2008) Comparative cognitive profiles of obsessive- compulsive disorder and schizophrenia. Arch Clin Neuropsychol 23(5):487–500

    Article  PubMed  Google Scholar 

  42. Tükel R, Gürvit H, Ertekin BA, Oflaz S, Ertekin E, Baran B et al (2012) Neuropsychological function in obsessive-compulsive disorder. Compr Psychiatry 53(2):167–175

    Article  PubMed  Google Scholar 

  43. Bellfy L, Kwapis JL (2020) Molecular mechanisms of reconsolidation-dependent memory updating. Int J Mol Sci 21(18):6580. https://doi.org/10.3390/ijms21186580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Moreno M, Cardona D, Gómez MJ, Sánchez-Santed F, Tobeña A, Fernández-Teruel A et al (2010) Impulsivity characterization in the Roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 35(5):1198–1208. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3055403&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  45. Klein AB, Ultved L, Adamsen D, Santini MA, Tobeña A, Fernandez-Teruel A et al (2014) 5-HT2A and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains. Neuroscience. 263:36–45

    Article  PubMed  CAS  Google Scholar 

  46. Fomsgaard L, Moreno JL, de la Fuente RM, Brudek T, Adamsen D, Rio-Alamos C et al (2018) Differences in 5-HT2A and mGlu2 receptor expression levels and repressive epigenetic modifications at the 5-HT2A promoter region in the Roman low- (RLA-I) and high- (RHA- I) avoidance rat strains. Mol Neurobiol 55(3):1998–2012

    Article  PubMed  CAS  Google Scholar 

  47. Barlow RL, Alsiö J, Jupp B, Rabinovich R, Shrestha S, Roberts AC et al (2015) Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning. Neuropsychopharmacology 40(7):1619–1630. https://pubmed.ncbi.nlm.nih.gov/25567428/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Vermeire ST, Audenaert KR, Dobbeleir AA, De Meester RH, De Vos FJ, Peremans KY (2009) Evaluation of the brain 5-HT2A receptor binding index in dogs with anxiety disorders, measured with 123I-5I-R91150 and SPECT. J Nucl Med 50(2):284–289. https://pubmed.ncbi.nlm.nih.gov/19164223/

    Article  PubMed  Google Scholar 

  49. Boddington R, Gómez Dunlop CA, Garnham LC, Ryding S, Abbey-Lee RN, Kreshchenko A et al (2020) The relationship between monoaminergic gene expression, learning, and optimism in red junglefowl chicks. Anim Cogn 23(5):901–911. https://pubmed.ncbi.nlm.nih.gov/32440792/

    Article  PubMed  PubMed Central  Google Scholar 

  50. Du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B (2017) Gene expression related to serotonergic and glutamatergic neurotransmission is altered in the flinders sensitive line rat model of depression: effect of ketamine. Synapse 71(1):37–45. https://pubmed.ncbi.nlm.nih.gov/27589698/

    Article  PubMed  Google Scholar 

  51. Boulougouris V, Chamberlain SR, Robbins TW (2009) Cross-species models of OCD spectrum disorders. Psychiatry Res 170(1):15–21 https://linkinghub.elsevier.com/retrieve/pii/S0165178108002370

    Article  PubMed  Google Scholar 

  52. Amodeo DA, Yi J, Sweeney JA, Ragozzino ME, Vijayaraghavan S, Powell S et al (2014) Oxotremorine treatment reduces repetitive behaviors in BTBR T+ tf/J mice. Front Synaptic Neurosci 6:17 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131251/pdf/fnsyn-06-00017.pdf

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cornea-Hébert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409(2):187–209

    Article  PubMed  Google Scholar 

  54. Stackman RW, Zhang G, Sgeirsdóttir HN, Cohen SJ, Munchow AH, Barrera MP (2013) Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology 64(1):403–413. https://pubmed.ncbi.nlm.nih.gov/22722027/

    PubMed  Google Scholar 

  55. Perani D, Garibotto V, Gorini A, Moresco RM, Henin M, Panzacchi A et al (2008) In vivo PET study of 5HT(2A) serotonin and D(2) dopamine dysfunction in drug-naive obsessive-compulsive disorder. Neuroimage 42(1):306–314. https://pubmed.ncbi.nlm.nih.gov/18511303/

    Article  PubMed  Google Scholar 

  56. López-Figueroa AL, Norton CS, López-Figueroa MO, Armellini-Dodel D, Burke S, Akil H et al (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 55(3):225–233

    Article  PubMed  Google Scholar 

  57. Hurlemann R, Matusch A, Kuhn KU, Berning J, Elmenhorst D, Winz O et al (2008) 5-HT2A receptor density is decreased in the at-risk mental state. Psychopharmacology (Berl) 195(4):579–590

    Article  PubMed  CAS  Google Scholar 

  58. Matsumoto I, Inoue Y, Iwazaki T, Pavey G, Dean B (2005) 5-HT2A and muscarinic receptors in schizophrenia: a postmortem study. Neurosci Lett 379(3):164–168

    Article  PubMed  CAS  Google Scholar 

  59. Sinopoli VM, Burton CL, Kronenberg S, Arnold PD (2017) A review of the role of serotonin system genes in obsessive-compulsive disorder. Neurosci Biobehav Rev 80:372–381. https://pubmed.ncbi.nlm.nih.gov/28576508/

    Article  PubMed  CAS  Google Scholar 

  60. Rosenzweig-Lipson S, Sabb A, Stack G, Mitchell P, Lucki I, Malberg JE et al (2007) Antidepressant-like effects of the novel, selective, 5-HT2C receptor agonist WAY-163909 in rodents. Psychopharmacology (Berl) 192(2):159–170

    Article  PubMed  CAS  Google Scholar 

  61. Higgins GA, Brown M, St John J, MacMillan C, Silenieks LB, Thevarkunnel S (2020) Effects of 5- HT2C receptor modulation and the NA reuptake inhibitor atomoxetine in tests of compulsive and impulsive behaviour. Neuropharmacology 170:108064. https://pubmed.ncbi.nlm.nih.gov/32222404/

    Article  PubMed  CAS  Google Scholar 

  62. Chou-Green JM, Holscher TD, Dallman MF, Akana SF (2003) Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol Behav 78(4–5):641–649

    Article  PubMed  CAS  Google Scholar 

  63. Alsiö J, Nilsson SRO, Gastambide F, Wang RAH, Dam SA, Mar AC et al (2015) The role of 5- HT2C receptors in touchscreen visual reversal learning in the rat: a cross-site study. Psychopharmacology 232(21–22):4017–4031. https://pubmed.ncbi.nlm.nih.gov/26007324/

    Article  PubMed  PubMed Central  Google Scholar 

  64. Castensson A, Emilsson L, Sundberg R, Jazin E (2003) Decrease of serotonin receptor 2C in schizophrenia brains identified by high-resolution mRNA expression analysis. Biol Psychiatry 54(11):1212–1221

    Article  PubMed  CAS  Google Scholar 

  65. Castensson A, Åberg K, McCarthy S, Saetre P, Andersson B, Jazin E (2005) Serotonin receptor 2C (HTR2C) and schizophrenia: examination of possible medication and genetic influences on expression levels. Am. J. Med. Genet.- Neuropsychiatric Genet 134(1):84–89

    Article  Google Scholar 

  66. Ploense KL, Vieira P, Bubalo L, Olivarria G, Carr AE, Szumlinski KK et al (2018) Contributions of prolonged contingent and non-contingent cocaine exposure to escalation of cocaine intake and glutamatergic gene expression. Psychopharmacology (Berl) 235(5):1347–1359

    Article  PubMed  CAS  Google Scholar 

  67. Smaga I, Wydra K, Suder A, Frankowska M, Sanak M, Caffino L et al (2021) The NMDA receptor subunit (GluN1 and GluN2A) modulation following different conditions of cocaine abstinence in rat brain structures. Neurotox Res 39(3):556–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Elfving B, Müller HK, Oliveras I, Østerbøg TB, Rio-Alamos C, Sanchez-Gonzalez A et al (2019) Differential expression of synaptic markers regulated during neurodevelopment in a rat model of schizophrenia-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 95:109669. https://pubmed.ncbi.nlm.nih.gov/31228641/

    Article  PubMed  CAS  Google Scholar 

  69. Gafford G, Jasnow AM, Ressler KJ (2014) Grin1 receptor deletion within CRF neurons enhances fear memory. PloS One 9(10):e111009

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hirsch SJ, Regmi NL, Birnbaum SG, Greene RW (2015) CA1-specific deletion of NMDA receptors induces abnormal renewal of a learned fear response. Hippocampus 25(11):1374–1379. https://pubmed.ncbi.nlm.nih.gov/25786918/

    Article  PubMed  CAS  Google Scholar 

  71. Chen JY, Campos CA, Jarvie BC, Palmiter RD (2018) Parabrachial CGRP neurons establish and sustain aversive taste memories. Neuron 100(4):891–899.e5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kew JNC, Koester A, Moreau JL, Jenck F, Ouagazzal AM, Mutel V et al (2000) Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. J Neurosci 20(11):4037–4049. https://pubmed.ncbi.nlm.nih.gov/10818139/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Umemori J, Takao K, Koshimizu H, Hattori S, Furuse T, Wakana S et al (2013) ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response. BMC Res Notes 6(1):1–23. https://pubmed.ncbi.nlm.nih.gov/23688147/

    Article  Google Scholar 

  74. Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV et al (2003) Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. Mol Psychiatry 8(2):241–245. https://pubmed.ncbi.nlm.nih.gov/12610658/

    Article  PubMed  CAS  Google Scholar 

  75. Liu YP, Ding M, Zhang XC, Liu Y, Xuan JF, Xing JX et al (2019) Association between polymorphisms in the GRIN1 gene 5′ regulatory region and schizophrenia in a northern Han Chinese population and haplotype effects on protein expression in vitro. BMC Med Genet 20(1):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhao X, Li H, Shi Y, Tang R, Chen W, Liu J et al (2006) Significant association between the genetic variations in the 5′ end of the N-methyl-D-aspartate receptor subunit gene GRIN1 and schizophrenia. Biol Psychiatry 59(8):747–753

    Article  PubMed  CAS  Google Scholar 

  77. Hung CC, Chen HY, Chen CH (2002) Systematic mutation analysis of the human glutamate receptor, ionotropic, N-methyl-D-aspartate 1 gene(GRIN1) in schizophrenic patients. Psychiatr Genet 12(4):225–230. https://pubmed.ncbi.nlm.nih.gov/12454527/

    Article  PubMed  Google Scholar 

  78. Masrour FF, Peeri M, Azarbayjani MA, Hosseini MJ (2018) Voluntary exercise during adolescence mitigated negative the effects of maternal separation stress on the depressive-like behaviors of adult male rats: role of NMDA receptors. Neurochem Res 43(5):1067–1074

    Article  PubMed  CAS  Google Scholar 

  79. Shin W, Kim K, Serraz B, Cho YS, Kim D, Kang M et al (2020) Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice. PLoS Biol 18(4):e3000717

    Article  PubMed  PubMed Central  Google Scholar 

  80. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG et al (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338(6114):1619–1622

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bozorgmehr A, Ghadirivasfi M, Shahsavand Ananloo E (2017) Obsessive-compulsive disorder, which genes? Which functions? Which pathways? An integrated holistic view regarding OCD and its complex genetic etiology. J Neurogenet 31(3):153–160. https://pubmed.ncbi.nlm.nih.gov/28608743/

    Article  PubMed  CAS  Google Scholar 

  82. Alonso P, Gratacós M, Segalàs C, Escaramís G, Real E, Bayés M et al (2012) Association between the NMDA glutamate receptor GRIN2B gene and obsessive-compulsive disorder. J Psychiatry Neurosci 37(4):273–281 http://www.ncbi.nlm.nih.gov/pubmed/22433450

    Article  PubMed  PubMed Central  Google Scholar 

  83. Arnold PD, Rosenberg DR, Mundo E, Tharmalingam S, Kennedy JL, Richter MA (2004) Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive- compulsive disorder: a preliminary study. Psychopharmacology (Berl) 174(4):530–538

    Article  PubMed  CAS  Google Scholar 

  84. Ding ZM, Ingraham CM, Hauser SR, Lasek AW, Bell RL, Mcbride WJ (2017) Reduced levels of mGlu2 receptors within the prelimbic cortex are not associated with elevated glutamate transmission or high alcohol drinking. Alcohol Clin Exp Res 41(11):1896–1906. https://pubmed.ncbi.nlm.nih.gov/28858384/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Liao W, Liu Y, Wang L, Cai X, Xie H, Yi F et al (2021) Chronic mild stress-induced protein dysregulations correlated with susceptibility and resiliency to depression or anxiety revealed by quantitative proteomics of the rat prefrontal cortex. Transl Psychiatry 11(1):143. https://pubmed.ncbi.nlm.nih.gov/33627638/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Tsunoka T, Kishi T, Kitajima T, Okochi T, Okumura T, Yamanouchi Y et al (2010) Association analysis of GRM2 and HTR2A with methamphetamine-induced psychosis and schizophrenia in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 34(4):639–644

    Article  PubMed  CAS  Google Scholar 

  87. Orhan C, Erten F, Er B, Tuzcu M, Şahin N, Durmaz Kurşun ÖE et al (2021) Lutein/zeaxanthin isomers regulate neurotrophic factors and synaptic plasticity in trained rats. Turk J Med Sci 51(4):2167–2176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38(3):579–593

    Article  PubMed  Google Scholar 

  89. Favalli G, Li J, Belmonte-de-Abreu P, Wong AHC, Daskalakis ZJ (2012) The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res 46(1):1–11. https://pubmed.ncbi.nlm.nih.gov/22030467/

    Article  PubMed  Google Scholar 

  90. Martínez-Rivera FJ, Martínez NA, Martínez M, Ayala-Pagán RN, Silva WI, Barreto-Estrada JL (2019) Neuroplasticity transcript profile of the ventral striatum in the extinction of opioid-induced conditioned place preference. Neurobiol Learn Mem 1:163

    Google Scholar 

  91. Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 16(5):279–288

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rosas-Vidal LE, Do-Monte FH, Sotres-Bayon F, Quirk GJ (2014) Hippocampal-prefrontal BDNF and memory for fear extinction. Neuropsychopharmacology 39(9):2161–2169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Elfving B, Plougmann PH, Müller HK, Mathé AA, Rosenberg R, Wegener G (2010) Inverse correlation of brain and blood BDNF levels in a genetic rat model of depression. Int J Neuropsychopharmacol 13(5):563–572

    Article  PubMed  CAS  Google Scholar 

  94. Murínová J, Hlaváčová N, Chmelová M, Riečanský I (2017) The evidence for altered BDNF expression in the brain of rats reared or housed in social isolation: a systematic review. Front Behav Neurosci 11:101 http://www.ncbi.nlm.nih.gov/pubmed/28620285

    Article  PubMed  PubMed Central  Google Scholar 

  95. Velazquez-Sanchez C, Muresan L, Marti-Prats L, Belin D (2023) The development of compulsive coping behaviour is associated with a downregulation of Arc in a Locus Coeruleus neuronal ensemble. Neuropsychopharmacology 48(4):653–663. https://pubmed.ncbi.nlm.nih.gov/36635597/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Maina G, Rosso G, Zanardini R, Bogetto F, Gennarelli M, Bocchio-Chiavetto L (2010) Serum levels of brain-derived neurotrophic factor in drug-naïve obsessive-compulsive patients: a case- control study. J Affect Disord 122(1–2):174–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Sjoerd Schurer from Noldus Technical Support for his prompt assistance and help in recovering damaged files from the MWM experiment.

Funding

This work was supported by the following funding sources: MCIN/AEI/10.13039/501100011033/ grant number PGC2018-099117-B-C21 Gobierno de España, UAL2020- CTSD2068 with FEDER I+D+I funds “Una manera de hacer Europa,” PND-2022l024 Plan Nacional sobre Drogas, Ministerio de Sanidad, Gobierno de España and PID2022-139286NB-I00 Proyectos de Generación de Conocimiento 2022, Gobierno de España.

Author information

Authors and Affiliations

Authors

Contributions

ÁPP and MM contributed to the conception and design of the study. ÁPP, EMG, SM, CM, and MOC collected and analyzed the data. CPF contributed with methodological assistance. FSS contributed to the data interpretation. ÁPP wrote the first draft of the manuscript. MM supervised all the experimental processes. MM also had contributions with the resources, the project administration, and the funding acquisition. All authors contributed to the manuscript revision, and read, and approved the submitted version.

Corresponding author

Correspondence to Margarita Moreno-Montoya.

Ethics declarations

Ethics Approval

All procedures were carried out following the Spanish Royal Decree 53/ 2013 on the protection of experimental animals, the European Community Directive 2010/63/EU for animal experiments, and comply with the ARRIVE guidelines for animal research. The Animal Research Committee of the University of Almeria approved the experiments described here, and the authors declare that the research shows commitment to the 3Rs principle (replacement, reduction, refinement).

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prados-Pardo, Á., Martín-González, E., Mora, S. et al. Reduced Expression of the Htr2a, Grin1, and Bdnf Genes and Cognitive Inflexibility in a Model of High Compulsive Rats. Mol Neurobiol 60, 6975–6991 (2023). https://doi.org/10.1007/s12035-023-03506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03506-5

Keywords

Navigation