Skip to main content
Log in

High piezoelectric properties of 0.82(Bi0.5Na0.5)TiO3–0.18(Bi0.5K0.5)TiO3 lead-free ceramics modified by (Mn1/3Nb2/3)4+ complex ions

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The complex ions (Mn1/3Nb2/3)4+ doped 0.82BNT–0.18BKT (BNKT-xMN) ceramics were prepared by conventional solid-state sintering. The effects of the MN content on the structural and electrical properties of the BNKT-xMN ceramics were investigated. The grain size decreases sharply after doping MN. With the increase of the MN content, the phase structure changes from the rhombohedral and tetragonal phase to the tetragonal phase, then to the pseudo-cubic phase. The ferroelectric phase transforms to the relaxor phase. At critical phase (x = 0.03), the maximum positive bipolar strain and unipolar strain are 0.38 and 0.386%, respectively. The corresponding \(d_{33}^{*}\) and d33 are 767 pm V–1 and 158 pC N–1, respectively. Meanwhile, the dielectric constant gradually decreases with the increase of the MN content, which flattens the permittivity curves. The large piezoelectric responses are closely associated with the reversible relaxor-ferroelectric phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rödel J, Webber K G, Dittmer R, Jo W, Kimura M and Damjanovic D 2015 J. Eur. Ceram. Soc. 35 1659

    Article  Google Scholar 

  2. Rödel J, Jo W, Seifert K T P, Anton E M and Granzow T 2009 J. Am. Ceram. Soc. 92 1153

    Article  Google Scholar 

  3. Fan G F, Lu W Z, Wang X H and Liang F 2007 Appl. Phys. Lett. 91 202908

    Article  Google Scholar 

  4. Hao J G, Wang J W, Bai W F, Shen B and Zhai J W 2012 Phys. Status Solidi R. 6 451

    Article  CAS  Google Scholar 

  5. Zhou C R, Liu X Y, Li W Z and Yuan C L 2009 J. Phys. Chem. Solids 70 541

    Article  CAS  Google Scholar 

  6. Rashad Z and Feteira A 2018 Mater. Lett. 222 180

    Article  CAS  Google Scholar 

  7. Si Y, Li Y, Li L, Li H, Zhao Z H and Dai Y J 2020 J. Am. Ceram. Soc. 103 1765

    Article  CAS  Google Scholar 

  8. Ge R F, Zhao Z H, Duan S F, Kang X Y, Lv Y K, Yin D S et al 2017 J. Alloys Compd. 724 1000

    Article  CAS  Google Scholar 

  9. Yin J, Wang Y M, Zhang Y X, Wu B and Wu J G 2018 Acta Mater. 158 269

    Article  CAS  Google Scholar 

  10. Bai W F, Wang L J, Zheng P, Wen F, Lia L L, Jia Z G et al 2018 Ceram. Int. 44 17022

    Article  CAS  Google Scholar 

  11. Fu D S, Taniguchi H, Itoh M, Koshihara S Y, Yamamoto N and Mori S 2009 Phys. Rev. Lett. 103 207601

    Article  Google Scholar 

  12. Westphal V, Kleemann W and Glinchuk M D 1992 Phys. Rev. Lett. 68 847

    Article  CAS  Google Scholar 

  13. Pirc R and Blinc R 1999 Phys. Rev. B 60 13470

    Article  CAS  Google Scholar 

  14. Rao B N, Datta R, Chandrashekaran S S, Mishra D K, Sathe V, Senyshyn A et al 2013 Phys. Rev. B 88 224103

    Article  Google Scholar 

  15. Garg R, Rao B N, Senyshyn A, Krishna P S R and Ranjan R 2013 Phys. Rev. B 88 014103

    Article  Google Scholar 

  16. Zhang Y J, Chu R Q, Xu Z J, Hao J G, Chen Q, Peng F et al 2010 J. Alloys Compd. 502 341

    Article  CAS  Google Scholar 

  17. Hussain A, Ahn C W, Lee J S, Ullah A and Kim I W 2010 Sens. Actuator A Phys. 158 84

    Article  CAS  Google Scholar 

  18. Ullah A, Malik R A, Ullah A, Lee D S, Jeong S J, Lee J S et al 2014 J. Eur. Ceram. Soc. 34 9

    Article  Google Scholar 

  19. Liu X, Liu B H, Li F, Li P, Zhai J W and Shen B 2018 J. Mater. Sci. 53 309

    Article  CAS  Google Scholar 

  20. Xie H, Yang L, Pang S J, Yuan C L, Chen G H, Wang H et al 2019 J. Phys. Chem. Solids 126 287

    Article  CAS  Google Scholar 

  21. Pang S J, Yang L, Qin J Y, Qin H, Xie H, Wang H et al 2019 Appl. Phys. A Mater. 125 119

    Article  Google Scholar 

  22. Shieh J, Lin Y C and Chen C S 2010 J. Phys. D: Appl. Phys. 43 025404

    Article  Google Scholar 

  23. Li W, Zeng H R, Hao J G and Zhai J W 2013 J. Alloys Compd. 580 157

    Article  CAS  Google Scholar 

  24. Xu C H, Fu Z Q, Liu Z, Wang L, Yan S G, Chen X F et al 2018 ACS Sustain. Chem. Eng. 6 16151

    Article  CAS  Google Scholar 

  25. Camargo J, Espinosa A P, Ramajo L and Castro M 2018 J. Mater. Sci.: Mater. Electron. 29 5427

    CAS  Google Scholar 

  26. Xi H, Yu L, Qian H, Chen F, Mao M, Liu Y et al 2020 J. Mater. Sci. 55 1388

    Article  CAS  Google Scholar 

  27. Petzelt J, Kamba S, Fábry J, Noujni D, Porokhonskyy V, Pashkin A et al 2004 J. Phys.: Condens. Matter 16 2719

    CAS  Google Scholar 

  28. Rout S K, Raj A and Ghosh S K 2017 Ferroelectrics 518 66

    Article  CAS  Google Scholar 

  29. Wu Y, Wang G, Jiao Z, Fan Y, Peng P and Dong X 2019 RSC Adv. 9 21355

    Article  CAS  Google Scholar 

  30. Zhao B, Liu L and Hua M 2020 Bull. Chin. Ceram. Soc. 39 254

    Google Scholar 

  31. Li Z, Han B, Li J, Li M, Zhang J, Yin J et al 2019 J. Alloys Compd. 774 948

    Article  CAS  Google Scholar 

  32. Wu J Y, Mahajan A, Riekehr L, Zhang H F, Yang B, Meng N et al 2018 Nano Energy 50 723

    Article  CAS  Google Scholar 

  33. Guo Y C, Fan H Q and Shi J 2014 J. Mater. Sci. 50 403

    Article  Google Scholar 

  34. Jo W, Granzow T, Aulbach E, Rödel J and Damjanovic D 2009 J. Appl. Phys. 105 112906

    Article  Google Scholar 

  35. Zhao Z H, Ye M Y, Ji H M, Li X L, Zhang X W and Dai Y J 2018 Mater. Des. 137 184

    Article  CAS  Google Scholar 

  36. Kang W S, Zheng Z S, Li Y L and Zhao R J 2020 Ceram. Int. 46 24091

    Article  CAS  Google Scholar 

  37. Bokov A A and Ye Z G 2006 J. Mater. Sci. 41 31

    Article  CAS  Google Scholar 

  38. Peng P, Nie H C, Liu Z, Ren W J, Cao F, Wang G S et al 2017 J. Am. Ceram. Soc. 100 1030

    Article  CAS  Google Scholar 

  39. Rüdiger A E 2010 Phys. Chem. Chem. Phys. 13 368

    Google Scholar 

  40. Chandrasekhar M, Khatua D K, Pattanayak R and Kumar P 2017 J. Phys. Chem. Solids 111 160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (11664006, 61965007), Guangxi Natural Science Foundation (2018GXNSFDA281042), Innovation Project of GUET Graduate Education (2018YJCX81) and Guangxi Key Laboratory of Information Materials (191023-Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwen Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Xie, H., Sun, Y. et al. High piezoelectric properties of 0.82(Bi0.5Na0.5)TiO3–0.18(Bi0.5K0.5)TiO3 lead-free ceramics modified by (Mn1/3Nb2/3)4+ complex ions. Bull Mater Sci 44, 100 (2021). https://doi.org/10.1007/s12034-021-02389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02389-3

Keywords

Navigation