Skip to main content

Advertisement

Log in

Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT–BT ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The (Bi0.5Na0.5)0.94Ba0.06Ti(1 − x)(Lu0.5Nb0.5)xO3 (BNBT–xLN, x = 0, 0.02, 0.03, 0.04, 0.05, 0.07) ceramics were designed to investigate their dielectric, ferroelectric, energy storage and electrostriction properties. All ceramics illustrated single pseudo-cubic perovskite structure and densely stacked microstructure. The LN doping disturbed the long-range ordered ferroelectric phase, which was confirmed by the depressed PIE loops and S–E curves. The excellent piezoelectric response was realized in the coexistence region of the ferroelectric polar and weak-polar phases. A significant enhancement of electric field-induced strains (Smax = 0.42%) with a large average normalized strain coefficient (d33* = Smax/Emax) of 602.41 pm/V, electrostriction coefficient (Q33 = 0.0334 m4/C2) was achieved at x = 0.02. And a high energy storage density of 0.72 J/cm3 was obtained at x = 0.03. As a result, the systematic investigations on the BNBT–xLN ceramics can benefit the developments of low electric field piezoelectric and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Son, C.W. Ahn, W. Jo, Lead-free piezoceramics -Where to move on? J. Materiomics. 2, 1–24 (2016)

    Article  Google Scholar 

  2. J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, Requirements for the transfer of lead-free piezoceramics into application. J. Materiomics. 4, 13–26 (2018)

    Article  Google Scholar 

  3. Z. Yang, B. Liu, L. Wei, Y. Hou, Structure and electrical properties of (1−x)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull. 43, 81–89 (2008)

    Article  Google Scholar 

  4. W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rödel, Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J. Appl. Phys. 109, 014110 (2011)

    Article  ADS  Google Scholar 

  5. X. Lu, J. Xu, L. Yang, C. Zhou, Y. Zhao, C. Yuan, Q. Li, G. Chen, H. Wang, Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping. J. Materiomics. 2, 87–93 (2016)

    Article  Google Scholar 

  6. R. Zuo, C. Ye, X. Fang, J. Li, Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics. J. Eur. Cream. Soc. 28, 871–877 (2008)

    Article  Google Scholar 

  7. Y.J. Dai, S. Zhang, T.R. Shrout, X.W. Zhang, Piezoelectric and ferroelectric properties of Li-doped (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 1108–1113 (2010)

    Article  Google Scholar 

  8. P.Y. Chen, C.S. Chen, C.S. Tu, T.L. Chang, Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics. J. Eur. Cream. Soc. 34, 4223–4233 (2014)

    Article  Google Scholar 

  9. S. Uddin, G.-P. Zheng, Y. Iqbal, R. Ubic, J. Yang, Unification of the negative electrocaloric effect in Bi1/2Na1/2TiO3–BaTiO3 solid solutions by Ba1/2Sr1/2TiO3 doping. J. Appl. Phys. 114, 213519 (2013)

    Article  ADS  Google Scholar 

  10. J. Anthoniappen, C.S. Tu, P.Y. Chen, C.S. Chen, Y.U. Idzerda, S.J. Chiu, Raman spectra and structural stability in B-site manganese doped (Bi0.5Na0.5)0.925Ba0.075TiO3 relaxor ferroelectric ceramics. J. Eur. Cream. Soc. 35, 3495–3506 (2015)

    Article  Google Scholar 

  11. C.C. Jin, F.F. Wang, L.L. Wei, J. Tang, Y. Li, Q.R. Yao, C.Y. Tian, W.Z. Shi, Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3-based lead-free solid solutions. J. Alloy. Compd. 585, 185–191 (2014)

    Article  Google Scholar 

  12. N. Zhao, H. Fan, X. Ren, S. Gao, J. Ma, Y. Shi, A novel ((Bi0.5Na0.5)0.94Ba0.06)(1–x)(K0.5Nd0.5)xTiO3 lead-free relaxor ferroelectric ceramic with large electrostrains at wide temperature ranges. Ceram. Int. 44, 571–579 (2018)

    Article  Google Scholar 

  13. B. Hu, H. Fan, L. Ning, Y. Wen, C. Wang, High energy storage performance of [(Bi0.5Na0.5)0.94Ba0.06]0.97La0.03Ti1−x(Al0.5Nb0.5)xO3 ceramics with enhanced dielectric breakdown strength. Ceram. Int. 44, 15160–15166 (2018)

    Article  Google Scholar 

  14. R. Cheng, Y. Duan, R. Chu, J. Hao, J. Du, Z. Xu, G. Li, Investigation of structural and electrical properties of B-site complex ion (Nd1/2Ta1/2)4+-doped Bi1/2Na1/2TiO3 lead-free piezoelectric ceramic. J. Mater. Sci. Mater. El. 26, 5409–5415 (2015)

    Article  Google Scholar 

  15. X. Qiao, X. Li, Z. Wang, C. He, Y. Liu, X. Yang, X. Long, Preparation and characterization of Pb(Lu1/2Nb1/2)O3–Pb(Ni1/3Nb2/3)O3–PbTiO3 ternary ferroelectric ceramics with high piezoelectric constant. Mater. Res. Bull. 102, 122–129 (2018)

    Article  Google Scholar 

  16. R. Ranjan, A. Dviwedi, Structure and dielectric properties of (Na0.50Bi0.50)1−x BaxTiO3: 0 ≤ x ≤ 0.10. Solid State Commun. 135, 394–399 (2005)

    Article  ADS  Google Scholar 

  17. S. Prasertpalichat, W. Schmidt, D.P. Cann, Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. J. Adv. Dielectr. 06, 1650012 (2016)

    Article  ADS  Google Scholar 

  18. A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics. Mater. Chem. Phys. 143, 1282–1288 (2014)

    Article  Google Scholar 

  19. J. Shi, H. Fan, X. Liu, Y. Ma, Q. Li, Bi deficiencies induced high permittivity in lead-free BNBT-BST high-temperature dielectrics. J. Alloy. Compd. 627, 463–467 (2015)

    Article  Google Scholar 

  20. S.T. Zhang, B. Yang, W. Cao, The temperature-dependent electrical properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5K0.5TiO3 near the morphotropic phase boundary. Acta. Mater. 60, 469–475 (2012)

    Article  Google Scholar 

  21. L. Jin, F. Li, S. Zhang, D.J. Green, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  Google Scholar 

  22. B. Luo, H. Dong, D. Wang, K. Jin, Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO3–CaZrO3 lead-free thin films. J. Am. Ceram. Soc. 101, 3460–3467 (2018)

    Article  Google Scholar 

  23. F. Weyland, H. Zhang, N. Novak, Enhancement of energy storage performance by criticality in lead-free relaxor ferroelectrics. Phys. Status. Solidi. R. 12, 1800165 (2018)

    Article  Google Scholar 

  24. A. Mahajan, H. Zhang, J. Wu, E.V. Ramana, M.J. Reece, H. Yan, Effect of phase transitions on thermal depoling in lead-free 0.94(Bi0.5Na0.5TiO3)–0.06(BaTiO3) based piezoelectrics. J. Phys. Chem. C 121, 5709–5718 (2017)

    Article  Google Scholar 

  25. L. Jin, W. Luo, L. Wang, Y. Tian, Q. Hu, L. Hou, L. Zhang, X. Lu, H. Du, X. Wei, G. Liu, Y. Yan, High thermal stability of electric field-induced strain in (1 − x)(Bi0.5Na0.5)TiO3xBa0.85Ca0.15Ti0.9Zr0.1O3 lead-free ferroelectrics. J. Eur. Cream. Soc. 39, 277–286 (2019)

    Article  Google Scholar 

  26. G. Viola, R. Mkinnon, V. Koval, A. Adomkevicius, S. Dunn, H. Yan, Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics. J. Phys. Chem. C 118, 8564–8570 (2014)

    Article  Google Scholar 

  27. C. Ma, H. Guo, S.P. Beckman, X. Tan, Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi(1/2)Na(1/2))TiO3-BaTiO3 piezoelectrics. Phys. Rev. Lett. 109, 107602 (2012)

    Article  ADS  Google Scholar 

  28. J. Wu, A. Mahajan, L. Riekehr, H. Zhang, B. Yang, N. Meng, Z. Zhang, H. Yan, Perovskite Srx(Bi1−xNa0.97xLi0.03)0.5TiO3 ceramics with polar nanoregions for high power energy storage. Nano. Energy. 50, 723–732 (2018)

    Article  Google Scholar 

  29. F. Li, L. Jin, Z. Xu, S. Zhang, Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014)

    Article  ADS  Google Scholar 

  30. C.H. Lee, H.S. Han, T.A. Duong, T.H. Dinh, C.W. Ahn, J.S. Lee, Stabilization of the relaxor phase by adding CuO in lead-free (Bi1/2Na1/2)TiO3–SrTiO3–BiFeO3 ceramics. Ceram. Int. 43, 1071–11077 (2017)

    Google Scholar 

  31. X. Zhang, G. Jiang, D. Liu, B. Yang, W. Cao, Enhanced electric field induced strain in (1−x)((Bi0.5Na0.5)TiO3–Ba(Ti, Zr)O3)–xSrTiO3 ceramics. Ceram. Int. 44, 12869–12876 (2018)

    Article  Google Scholar 

  32. X. Liu, X. Tan, Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28, 574–578 (2016)

    Article  ADS  Google Scholar 

  33. L. Jin, R. Huo, R. Guo, F. Li, D. Wang, Y. Tian, Q. Hu, X. Wei, Z. He, Y. Yan, G. Liu, Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe(3+)-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS. Appl. Mater. Interfaces. 8, 31109–31119 (2016)

    Article  Google Scholar 

  34. C. Ang, Z. Yu, High, Purely electrostrictive strain in lead-free dielectrics. Adv. Mater. 18, 103–106 (2006)

    Article  Google Scholar 

  35. S.-T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21, 4716–4720 (2009)

    Article  Google Scholar 

  36. W. Bai, D. Chen, P. Zheng, J. Xi, Y. Zhou, B. Shen, J. Zhai, Z. Ji, NaNbO3 templates-induced phase evolution and enhancement of electromechanical properties in < 00l> grain oriented lead-free BNT-based piezoelectric materials. J. Eur. Cream. Soc. 37, 2591–2604 (2017).

    Article  Google Scholar 

  37. M. Cernea, C. Galassi, B.S. Vasile, C. Capiani, C. Berbecaru, I. Pintilie, L. Pintilie, Structural, dielectric, and piezoelectric properties of fine-grained NBT-BT0.11 ceramic derived from gel precursor. J. Eur. Cream. Soc. 32, 2389–2397 (2012)

    Article  Google Scholar 

  38. S. Anem, K.S. Rao, K.H. Rao, Investigation of lanthanum substitution in lead-free BNBT ceramics for transducer applications. Ceram. Int. 42, 15319–15326 (2016)

    Article  Google Scholar 

  39. J. Li, F. Wang, C.M. Leung, S.W. Or, Y. Tang, X. Chen, T. Wang, X. Qin, W. Shi, Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics. J. Mater. Sci. 46, 5702–5708 (2011)

    Article  ADS  Google Scholar 

  40. L. Liu, D. Shi, Y. Huang, S. Wu, X. Chen, L. Fang, C. Hu, Quantitative description of the diffuse phase transition of BNT-NKN Ceramics. Ferroelectrics. 432, 65–72 (2012)

    Article  Google Scholar 

  41. S. Prasertpalichat, B. Phongthipphithak, N. Kumar, D.P. Cann, T. Bongkarn, Impedance spectroscopy study of Bi0.5(Na0.74K0.16Li0.10)0.5TiO3–Ba(Zr0.05Ti0.95)O3 ceramics prepared via combustion technique. Ceram. Int. 43, S145–S150 (2017)

    Article  Google Scholar 

  42. S. Praharaj, D. Rout, S. Anwar, V. Subramanian, Polar nanoregions in lead-free (Na0.5Bi0.5)TiO3–SrTiO3–BaTiO3 relaxors: an impedance spectroscopic study. J. Alloy. Compd. 706, 502–510 (2017)

    Article  Google Scholar 

  43. N. Thongyong, W. Tuichai, N. Chanlek, P. Thongbai, Effect of Zn2+ and Nb5+ co-doping ions on giant dielectric properties of rutile-TiO2 ceramics. Ceram. Int. 43, 15466–15471 (2017)

    Article  Google Scholar 

  44. J. Zang, M. Li, D.C. Sinclair, T. Frömling, W. Jo, J. Rödel, D. Johnson, Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 based high-temperature dielectrics. J. Am. Ceram. Soc. 97, 2825–2831 (2014)

    Article  Google Scholar 

  45. Y. Xia, Z. Liu, Y. Wang, L. Shi, L. Chen, J. Yin, X. Meng, Conduction behavior change responsible for the resistive switching as investigated by complex impedance spectroscopy. Appl. Phys. Lett. 91, 102904 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (61741105, 11664006), Guangxi Nature Science Foundation (2017GXNSFDA198024, 2016GXNSFAA380069) and Guangxi Key Laboratory of Information Materials (161001-Z, 171009-Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Yang or Jiwen Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, S., Yang, L., Qin, J. et al. Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT–BT ceramics. Appl. Phys. A 125, 119 (2019). https://doi.org/10.1007/s00339-019-2410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2410-6

Navigation