Skip to main content
Log in

Origin of the large strain response in tenary SrTi0.8Zr0.2O3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The perovskite oxides (1 − x)Bi0.5(Na0.9K0.1)0.5TiO3xSrTi0.8Zr0.2O3 (SZT1000x, x = 0, 0.2, 0.4, 0.6, 0.8, and 1 %) were prepared via the conventional solid-state reaction method. The room temperature ferroelectric PE loops coordinate with polarization current density JE curves illustrated the changes of ferroelectric domains and polar nanoregions under different driving fields exhaustively. The composition and electric field dependent strain behavior of this system were investigated to develop a lead-free piezoelectric material with a large strain response at a lower electric field. A large strain of 0.44 % (S max/E max = 744 pm/V) at an applied field of 50 kV/cm was obtained at the composition of 0.6 mol% SZT. Temperature-dependent hysteresis measurements reveal the primary origin of the large strain is due to the presence of a nonpolar phase at a zero field. Upon the application of an electric field, the nonpolar phase that can easily transform into a long-range ferroelectric phase, and then brings the system back to its unpoled state once the applied electric field is removed. Notably, the electric field required to deliver large strains is reduced to 40 kV/cm while the S max/E max reached up to 717 pm/V, indicating that the developed material is highly promising for actuator applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eichel RA, Kungl H (2010) Recent Developments and Future Perspectives of Lead-Free Ferroelectrics. Funct Mater Lett 3:1–4

    Article  Google Scholar 

  2. Suchanicz J, Roleder K, Kania A, Handerek J (1988) Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0.5Bi0.5TiO3. Ferroelectrics 77:107–110

    Article  Google Scholar 

  3. Saito - a1 Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432: 84-87 http://www.nature.com/nature/journal/v432/n7013/full/nature03028.html

  4. Fan HQ, Kim HE (2002) Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate-lead zirconate titanate. J Appl Phys 91:317–322

    Article  Google Scholar 

  5. Rodel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the Development of Lead-free Piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  Google Scholar 

  6. Zhang ST, Kounga AB, Aulbach E, Ehrenberg H, Rodel J (2007) Giant Strain in Lead-Free Piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 System. Appl Phys Lett 91:112906

    Article  Google Scholar 

  7. Jo W, Granzow T, Aulbach E, Rodel J, Damjanovic D (2009) Origin of the large strain response in K0.5Na0.5NbO3-modified Bi0.5Na0.5TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys 105:094102

    Article  Google Scholar 

  8. Hussain A, Ahn CW, Lee JS, Ullah A, Kim IW (2010) Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics. Sensor Actuat A Phys 158:84–89

    Article  Google Scholar 

  9. Ang C, Yu Z (2009) High remnant polarization in Sr0.7Bi0.2TiO3–Na0.5Bi0.5TiO3 solid solutions. Appl Phys Lett 95:232908

    Article  Google Scholar 

  10. Krauss W, Schutz D, Mautner FA, Feteira A, Reichmann K (2010) Piezoelectric properties and phase transition temperatures of the solid solution of (1 − x)(Bi0.5Na0.5)TiO3xSrTiO3. J Eur Ceram Soc 30:1827–1832

    Article  Google Scholar 

  11. Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3– SrTiO3 ferroelectric ceramics. Appl Phys Lett 92:262904

    Article  Google Scholar 

  12. Cheng XF, Tang XG, Ju SG, Jiang YP, Liu QX (2011) Dielectric properties and diffuse phase transition of Sol-Gel Derived 0.94 (Bi0. 5Na0. 5) TiO3-0.06 BaTiO3 ceramics. Adv Mater Res 311:1481–1484

    Article  Google Scholar 

  13. Parija B, Rout SK, Cavalcante LS, Simões AZ, Panigrahi S, Longo E, Batista NC (2012) Structure, microstructure and dielectric properties of 100 − x(Bi0.5Na0.5)TiO3 − x[SrTiO3] composites. Appl Phys A 109:715–723

    Article  Google Scholar 

  14. Yoon KJ, Yoon DN, Kang SJL (1990) Chemically induced grain boundary migration in SrTiO3. Ceram Int 16:151–155

    Article  Google Scholar 

  15. Zheng P, Zhang JL, Qin HB, Song KX, Wu J, Ying ZH, Zheng L, Deng JX (2013) MnO2-Modified Ba(Ti, Zr)O3 ceramics with high q m and good thermal stability. J Electron Mater 42:1154–1157

    Article  Google Scholar 

  16. Zhao X, Qu W, Tan X, Bokov AA, Ye ZG (2007) Electric field-induced phase transitions in (111)-, (110)-, and (100)-oriented Pb(Mg1/3Nb2/3)O3 single crystals. Phys rev B 75:104106

    Article  Google Scholar 

  17. Ullah A, Ahn CW, Ullah A, Won Kim IW (2013) Large strain under a low electric field in lead-free bismuth-based piezoelectrics. Appl Phys Lett 103:022906

    Article  Google Scholar 

  18. Zhao WL, Zuo RZ, Fu J, Shi M (2014) Large strains accompanying field-induced ergodic phase-polar ordered phase transformations in Bi(Mg0.5Ti0.5)O3–PbTiO3–(Bi0.5Na0.5)TiO3 ternary system. J Eur Ceram Soc 34:2299–2309

    Article  Google Scholar 

  19. Zhang ST, Kounga AB, Aulbach E, Granzow T, Jo W, Kleebe HJ, Rodel J (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties. J Appl Phys 103:034107

    Article  Google Scholar 

  20. Dittmer R, Gobeljic D, Jo W, Shvartsman VV, Lupascu DC, Jones JL, Rodel J (2014) Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors. J Appl Phys 115:084111

    Article  Google Scholar 

  21. Zhang QM, Wang H, Kim N, Cross LE (1994) Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J Appl Phys 75:454–459

    Article  Google Scholar 

  22. Chaplya PM, Mitrovic M, Carman GP, Straub FK (2006) Durability properties of piezoelectric stack actuators under combined electromechanical loading. J Appl Phys 100:124111

    Article  Google Scholar 

  23. Wang K, Hussain A, Jo W, Rodel J (2012) Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics. J Am Ceram Soc 95:2241–2247

    Article  Google Scholar 

  24. Chaplya PM, Carman GP (2001) Dielectric and piezoelectric response of lead zirconate-lead titanate at high electric and mechanical loads in terms of non-180° domain wall motion. J Appl Phys 90:5278–5286

    Article  Google Scholar 

  25. Singh A, Chatterjee R (2011) Structural, electrical, and strain properties of stoichiometric 1 − x − y(Bi0.5Na0.5)TiO3 − x(Bi0.5K0.5TiO3) − y(Na0.5K0.5)NbO3solid solutions. J Appl Phys 109:024105

    Article  Google Scholar 

  26. Bai W, Bian Y, Hao J, Shen B, Zhai J (2013) The composition and temperature-dependent structure evolution and large strain response in (1 − x)(Bi0.5Na0.5)TiO3 − xBa(Al0.5Ta0.5)O3 ceramics. J Am Ceram Soc 96:246–252

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (51172187), the SPDRF (20116102130002, 20116102120016) and 111 Program (B08040) of MOE, the Xi’an Science and Technology Foundation (CX12174, XBCL-1-08), the Shaanxi Science Foundation (2013KW12-02), Aeronautical Science Foundation (2013ZF53072), the SKLP Foundation (KP201421), and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Fan, H. & Shi, J. Origin of the large strain response in tenary SrTi0.8Zr0.2O3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoceramics. J Mater Sci 50, 403–411 (2015). https://doi.org/10.1007/s10853-014-8599-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8599-z

Keywords

Navigation