Skip to main content

Advertisement

Log in

Research Progress on the Mechanism of the SFRP-Mediated Wnt Signalling Pathway Involved in Bone Metabolism in Osteoporosis

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Osteoporosis (OP) is a metabolic bone disease linked to an elevated fracture risk, primarily stemming from disruptions in bone metabolism. Present clinical treatments for OP merely alleviate symptoms. Hence, there exists a pressing need to identify novel targets for the clinical treatment of OP. Research indicates that the Wnt signalling pathway is modulated by serum-secreted frizzled-related protein 5 (SFRP5), potentially serving as a pivotal regulator in bone metabolism disorders. Moreover, studies confirm elevated SFRP5 expression in OP, with SFRP5 overexpression leading to the downregulation of Wnt and β-catenin proteins in the Wnt signalling pathway, as well as the expression of osteogenesis-related marker molecules such as RUNX2, ALP, and OPN. Conversely, the opposite has been reported when SFRP5 is knocked out, suggesting that SFRP5 may be a key factor involved in the regulation of bone metabolism via the Wnt signalling axis. However, the molecular mechanisms underlying the action of SFRP5-induced OP have yet to be comprehensively elucidated. This review focusses on the molecular structure and function of SFRP5 and the potential molecular mechanisms of the SFRP5-mediated Wnt signalling pathway involved in bone metabolism in OP, providing reasonable evidence for the targeted therapy of SFRP5 for the prevention and treatment of OP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Aspray, T. J., & Hill, T. R. (2019). Osteoporosis and the Ageing Skeleton. SubCellular Biochemistry, 91, 453–476.

    Article  CAS  PubMed  Google Scholar 

  2. Palacios, S. (2022). Medical treatment of osteoporosis. Climacteric, 25, 43–49.

    Article  CAS  PubMed  Google Scholar 

  3. Parveen, B., Parveen, A., & Vohora, D. (2019). Biomarkers of Osteoporosis: An Update. Endocrine, Metabolic & Immune Disorders: Drug Targets, 19, 895–912.

    Article  CAS  Google Scholar 

  4. Zhang, L., Zheng, Y. L., Wang, R., Wang, X. Q., & Zhang, H. (2022). Exercise for osteoporosis: A literature review of pathology and mechanism. Frontiers in Immunology, 13, 1005665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lei, S. S., Su, J., Zhang, Y., Huang, X. W., Wang, X. P., Huang, M. C., Li, B., & Shou, D. (2021). Benefits andmechanisms of polysaccharides from Chinese medicinal herbs for anti-osteoporosis therapy: A review. Int J BiolMacromol., 193, 1996–2005.

    Article  CAS  Google Scholar 

  6. Yavropoulou, M. P., Makras, P., & Anastasilakis, A. D. (2019). Bazedoxifene for the treatment of osteoporosis. Expert Opin Pharmacother, 20, 1201–1210.

    Article  CAS  PubMed  Google Scholar 

  7. Sözen, T., Özışık, L., & Başaran, N. (2017). Anoverview and management of osteoporosis. Eur J Rheumatol, 4, 46–56.

    Article  PubMed  Google Scholar 

  8. Noh, J. Y., Yang, Y., & Jung, H. (2020). Molecular mechanisms and emerging therapeutics for osteoporosis. International Journal of Molecular Sciences, 21(20), 7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anthamatten, A., & Parish, A. (2019). Clinical update on osteoporosis. Journal of Midwifery and Women’s Health, 64(3), 265–275.

    Article  PubMed  Google Scholar 

  10. Yu, B., & Wang, C. Y. (2000). Osteoporosis and periodontal diseases-an update on their association and mechanistic links. Periodontology, 89, 99–113.

    Article  Google Scholar 

  11. Adejuyigbe, B., Kallini, J., Chiou, D., & Kallini, J. R. (2023). Osteoporosis: Molecular pathology, diagnostics, and therapeutics. International Journal of Molecular Sciences, 24(19), 14583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, J. Y., Zhong, Y. H., Chen, L. M., Zhuo, X. L., Zhao, L. J., & Wang, Y. T. (2023). Recent advance of small-molecule drugs for clinical treatment of osteoporosis: A review. European journal of medicinal chemistry, 259, 115654.

  13. Claudel, M., Jouzeau, J. Y., & Cailotto, F. (2019). Secreted Frizzled-related proteins (sFRPs) in osteo-articular diseases: Much more than simple antagonists of Wnt signaling? FEBS Journal, 286, 4832–4851.

    Article  CAS  PubMed  Google Scholar 

  14. García-García, P., Reyes, R., García-Sánchez, D., Pérez-Campo, F. M., Rodríguez-Rey, J. C., Évora, C., Díaz-Rodríguez, P., & Delgado, A. (2022). Nanoparticle-mediated selective Sfrp-1 silencing enhances bone density in osteoporotic mice. Journal Nanobiotechnology, 20, 462.

    Article  Google Scholar 

  15. Ouchi, N., Higuchi, A., Ohashi, K., Oshima, Y., Gokce, N., Shibata, R., Akasaki, Y., Shimono, A., & Walsh, K. (2010). Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science, 329, 454–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He, H. P., & Gu, S. (2021). The PPAR-γ/SFRP5/Wnt/β-catenin signal axis regulates the dexamethasone-induced osteoporosis. Cytokine, 143, 155488.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, H., He, Y., Wu, D., Dai, G., Zhao, C., Huang, W., & Jiang, D. (2017). Bone marrow sFRP5 level is negatively associated with bone formation markers. Osteoporosis International, 28, 1305–1311.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, W., Wu, P., Yu, F., Luo, G., Qing, L., & Tang, J. (2022). HIF-1α regulates bone homeostasis and angiogenesis, participating in the occurrence of bone metabolic diseases. Cells, 11(22), 3552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Awasthi, H., Mani, D., Singh, D., & Gupta, A. (2018). The underlying pathophysiology and therapeutic approaches for osteoporosis. Medicinal Research Reviews, 38, 2024–2057.

    Article  PubMed  Google Scholar 

  20. Constanze, B., Popper, B., Aggarwal, B. B., & Shakibaei, M. (2020). Evidence that TNF-β suppresses osteoblast differentiation of mesenchymal stem cells and resveratrol reverses it through modulation of NF-κB, Sirt1 andRunx2. Cell and Tissue Research, 381, 83–98.

    Article  CAS  PubMed  Google Scholar 

  21. Csaki, C., Matis, U., Mobasheri, A., & Shakibaei, M. (2009). Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochemistry and Cell Biology, 131, 251–266.

    Article  CAS  PubMed  Google Scholar 

  22. Lin, P. I., Tai, Y. T., Chan, W. P., Lin, Y. L., Liao, M. H., & Chen, R. M. (2017). Estrogen/ERα signaling axis participates in osteoblast maturation via upregulating chromosomal and mitochondrial complex gene expressions. Oncotarget, 9, 1169–1186.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chang, J., Wang, Z., Tang, E., Fan, Z., McCauley, L., Franceschi, R., Guan, K., Krebsbach, P. H., & Wang, C. Y. (2009). Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nature Medicine, 15, 682–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muñoz, M., Robinson, K., & Shibli-Rahhal, A. (2020). Bone Health and Osteoporosis Prevention and Treatment. Clinical Obstetrics and Gynecology, 63, 770–787.

    Article  PubMed  Google Scholar 

  25. Jilka, R. L. (2003). Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Medical and Pediatric Oncology, 41, 182–185.

    Article  PubMed  Google Scholar 

  26. Koutaki, D., Michos, A., Bacopoulou, F., & Charmandari, E. (2021). The emerging role of Sfrp5 and Wnt5a in the pathogenesis of obesity: Implications for a healthy diet and lifestyle. Nutrients, 13(7), 2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stuckenholz, C., Lu, L., Thakur, P. C., Choi, T. Y., Shin, D., & Bahary, N. (2013). Sfrp5 modulates both Wnt and BMP signaling and regulates gastrointestinal organogenesis [corrected] in the zebrafish Danio rerio. PLoS One, 8, e62470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marinou, K., Christodoulides, C., Antoniades, C., & Koutsilieris, M. (2012). Wnt signaling in cardiovascular physiology. Trends in Endocrinology and Metabolism, 23, 628–636.

    Article  CAS  PubMed  Google Scholar 

  29. Huang, A., & Huang, Y. (2020). Role of Sfrps in cardiovascular disease. Therapeutic Advances in Chronic Disease, 11, 2040622320901990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cho, S. W., Her, S. J., Sun, H. J., Choi, O. K., Yang, J. Y., Kim, S. W., Kim, S. Y., & Shin, C. S. (2008). Differential effects of secreted frizzled- related proteins (sFRPs) on osteoblastic differentiation of mouse mesenchymal cells and apoptosis of osteoblasts. Biochemical and Biophysical Research Communications, 367, 399–405.

    Article  CAS  PubMed  Google Scholar 

  31. Bravo, D., Salduz, A., Shogren, K. L., Okuno, M. N., Herrick, J. L., Okuno, S. H., Galindo, M., van Wijnen, A. J., Yaszemski, M. J., & Maran, A. (2018). Decreased local and systemic levels of sFRP3 protein in osteosarcoma patients. Gene, 674, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Okamoto, M., Udagawa, N., Uehara, S., Maeda, K., Yamashita, T., Nakamichi, Y., Kato, H., Saito, N., Minami, Y., Takahashi, N., & Kobayashi, Y. (2014). Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis. Science and Reports, 4, 4493.

    Article  Google Scholar 

  33. Satoh, W., Matsuyama, M., Takemura, H., Aizawa, S., & Shimono, A. (2008). Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis, 46, 92–103.

    Article  PubMed  Google Scholar 

  34. Maeda, K., Kobayashi, Y., Koide, M., Uehara, S., Okamoto, M., Ishihara, A., Kayama, T., Saito, M., & Marumo, K. (2019). The regulation of bone metabolism and disorders by Wnt signaling. International Journal of Molecular Sciences, 20(22), 5525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao, W., Cheng, Z., Shahnazari, M., Dai, W., Johnson, M. L., & Lane, N. E. (2010). Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. Journal of Bone and Mineral Research, 25, 190–199.

    Article  CAS  PubMed  Google Scholar 

  36. Bodine, P. V., Zhao, W., Kharode, Y. P., Bex, F. J., Lambert, A. J., Goad, M. B., Gaur, T., Stein, G. S., Lian, J. B., & Komm, B. S. (2004). The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Molecular Endocrinology, 18, 1222–1237.

    Article  CAS  PubMed  Google Scholar 

  37. Bodine, P. V., Stauffer, B., Ponce-de-Leon, H., Bhat, R. A., Mangine, A., Seestaller-Wehr, L. M., Moran, R. A., Billiard, J., Fukayama, S., Komm, B. S., Pitts, K., Krishnamurthy, G., Gopalsamy, A., Shi, M., Kern, J. C., Commons, T. J., Woodworth, R. P., Wilson, M. A., Welmaker, G. S., … Moore, W. J. (2009). A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone, 44, 1063–1068.

    Article  CAS  PubMed  Google Scholar 

  38. Mashhadikhan, M., Kheiri, H., & Dehghanifard, A. (2020). DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. Journal of Oral Biosciences, 62, 349–356.

    Article  PubMed  Google Scholar 

  39. Alfaro, M. P., Vincent, A., Saraswati, S., Thorne, C. A., Hong, C. C., Lee, E., & Young, P. P. (2010). sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. Journal of Biological Chemistry, 285, 35645–35653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oshima, T., Abe, M., Asano, J., Hara, T., Kitazoe, K., Sekimoto, E., Tanaka, Y., Shibata, H., Hashimoto, T., Ozaki, S., Kido, S., Inoue, D., & Matsumoto, T. (2005). Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood, 106, 3160–3165.

    Article  CAS  PubMed  Google Scholar 

  41. Yamada, A., Iwata, T., Yamato, M., Okano, T., & Izumi, Y. (2013). Diverse functions of secreted frizzled-related proteins in the osteoblastogenesis of human multipotent mesenchymal stromal cells. Biomaterials, 34, 3270–3278.

    Article  CAS  PubMed  Google Scholar 

  42. Azuma, K., Zhou, Q., & Kubo, K. Y. (2018). Morphological and molecular characterization of the senile osteoporosis in senescence-accelerated mouse prone 6 (SAMP6). Medical Molecular Morphology, 51, 139–146.

    Article  CAS  PubMed  Google Scholar 

  43. Katagiri, W., Osugi, M., Kawai, T., & Hibi, H. (2015). Secreted Frizzled-Related Protein Promotes Bone Regeneration by Human Bone MarrowDerived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 16, 23250–23258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parsons, M. J., Tammela, T., & Dow, L. E. (2021). WNT as a Driver and Dependency in Cancer. Cancer Discovery, 11, 2413–2429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boudin, E., Fijalkowski, I., Piters, E., & Van Hul, W. (2013). The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Seminars in Arthritis and Rheumatism, 43, 220–240.

    Article  CAS  PubMed  Google Scholar 

  46. Hayat, R., Manzoor, M., & Hussain, A. (2022). Wnt signaling pathway: A comprehensive review. Cell Biology International, 46, 863–877.

    Article  CAS  PubMed  Google Scholar 

  47. Chien, A. J., Moore, E. C., Lonsdorf, A. S., Kulikauskas, R. M., Rothberg, B. G., Berger, A. J., Major, M. B., Hwang, S. T., Rimm, D. L., & Moon, R. T. (2009). Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proceedings of the National Academy of Sciences, 106, 1193–1198.

    Article  CAS  Google Scholar 

  48. Cheng, C. W., Yeh, J. C., Fan, T. P., Smith, S. K., & Charnock-Jones, D. S. (2008). Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochemical and Biophysical Research Communications, 365, 285–290.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, X., Wu, M., & Chen, W. (2014). Wnt and the Wnt signaling pathway in bone development and disease. Frontiers in Bioscience (Landmark Edition), 19, 379–407.

    Article  PubMed  Google Scholar 

  50. Oliva, C. A., Montecinos-Oliva, C., & Inestrosa, N. C. (2018). Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. Progress in Molecular Biology and Translational Science, 153, 81–130.

    Article  CAS  PubMed  Google Scholar 

  51. Taciak, B., Pruszynska, I., Kiraga, L., Bialasek, M., & Krol, M. (2018). Wnt signaling pathway in development and cancer. J Physiol Pharmacol, 69(2), 185–196.

    CAS  Google Scholar 

  52. Wang, H., Zhang, R., Wu, X., Chen, Y., Ji, W., Wang, J., Zhang, Y., Xia, Y., Tang, Y., & Yuan, J. (2022). The Wnt signaling pathway in diabetic nephropathy. Frontiers in Cell and Developmental Biology, 9, 701547.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou, Y., Xu, J., Luo, H., Meng, X., Chen, M., & Zhu, D. (2022). Wnt signaling pathway in cancer immunotherapy. Cancer Letters, 525, 84–96.

    Article  CAS  PubMed  Google Scholar 

  54. Wan, Y., Lu, C., Cao, J., Zhou, R., Yao, Y., Yu, J., Zhang, L., Zhao, H., Li, H., Zhao, J., Zhu, X., He, L., Liu, Y., Yao, Z., Yang, X., & Guo, X. (2013). Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells. Bone, 55, 258–267.

    Article  CAS  PubMed  Google Scholar 

  55. Marini, F., Giusti, F., Palmini, G., & Brandi, M. L. (2023). Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporosis International, 34, 213–238.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, C. J., Zhu, N., Liu, Z., Shi, Z., Long, J., Zu, X. Y., Tang, Z. W., Hu, Z. Y., Liao, D. F., & Qin, L. (2020). Wnt5a/Ror2 pathway contributes to the regulation of cholesterol homeostasis and inflammatory response in atherosclerosis. Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids, 1865, 158547.

    Article  CAS  PubMed  Google Scholar 

  57. Sharma, M., & Pruitt, K. (2020). Wnt Pathway: an integral hub for developmental and oncogenic signaling networks. International Journal of Molecular Sciences, 21(21), 8018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, F., Yu, C., Li, F., Zuo, Y., Wang, Y., Yao, L., Wu, C., Wang, C., & Ye, L. (2021). Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduction and Targeted Therapy, 6, 307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rim, E. Y., Clevers, H., & Nusse, R. (2022). The Wnt Pathway: From Signaling Mechanisms to Synthetic Modulators. Annual Review of Biochemistry, 91, 571–598.

    Article  CAS  PubMed  Google Scholar 

  60. Huang, P., Yan, R., Zhang, X., Wang, L., Ke, X., & Qu, Y. (2019). Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacology & Therapeutics, 196, 79–90.

    Article  CAS  Google Scholar 

  61. Chen, N., & Wang, J. (2018). Wnt/β-catenin signaling and obesity. Frontiers in Physiology , 9, 792.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Martínez-Gil, N., Ugartondo, N., Grinberg, D., & Balcells, S. (2022). Wnt pathway extracellular components and their essential roles in bone homeostasis. Genes (Basel), 13(1), 138.

    Article  PubMed  Google Scholar 

  63. Choi, R. B., & Robling, A. G. (2021). The Wnt pathway: An important control mechanism in bone’s response to mechanical loading. Bone, 153, 116087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maeda, K., Takahashi, N., & Kobayashi, Y. (2013). Roles of Wnt signals in bone resorption during physiological and pathological states. Journal of Molecular Medicine (Berlin, Germany), 91, 15–23.

    Article  CAS  PubMed  Google Scholar 

  65. Lorzadeh, S., Kohan, L., Ghavami, S., & Azarpira, N. (2021). Autophagy and the Wnt signaling pathway: A focus on Wnt/β-catenin signaling. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1868, 118926.

    Article  CAS  PubMed  Google Scholar 

  66. Hernández, A. R., Klein, A. M., & Kirschner, M. W. (2012). Kinetic responses of β-catenin specify the sites of Wnt control. Science, 338, 1337–1340.

    Article  PubMed  Google Scholar 

  67. Topol, L., Jiang, X., Choi, H., Garrett-Beal, L., Carolan, P. J., & Yang, Y. (2003). Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. Journal of Cell Biology, 162, 899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kikuchi, A., Yamamoto, H., Sato, A., & Matsumoto, S. (2012). Wnt5a: Its signalling, functions and implication in diseases. Acta Psychologica, 204, 17–33.

    CAS  Google Scholar 

  69. Sato, A., Yamamoto, H., Sakane, H., Koyama, H., & Kikuchi, A. (2010). Wnt5a regulates distinct signalling pathways by binding to Frizzled2. The EMBO Journal, 29, 41–54.

    Article  CAS  PubMed  Google Scholar 

  70. Martineau, X., Abed, É., Martel-Pelletier, J., Pelletier, J. P., & Lajeunesse, D. (2017). Alteration of Wnt5a expression and of the non-canonical Wnt/PCP and Wnt/PKC-Ca2+ pathways in human osteoarthritis osteoblasts. PLoS ONE, 12, e0180711.

    Article  PubMed  PubMed Central  Google Scholar 

  71. an Amerongen, R., Fuerer, C., Mizutani, M., & Nusse, R. (2012). Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Developmental Biology, 369, 101–114.

    Article  PubMed  Google Scholar 

  72. Mi, B., Yan, C., Xue, H., Chen, L., Panayi, A. C., Hu, L., Hu, Y., Cao, F., Sun, Y., Zhou, W., Xiong, Y., & Liu, G. (2020). Inhibition of circulating miR-194-5p reverses osteoporosis through Wnt5a/β-catenin-dependent induction of osteogenic differentiation. Molecular Therapy-Nucleic Acids, 21, 814–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gong, Y., Slee, R. B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A. M., Wang, H., Cundy, T., Glorieux, F. H., Lev, D., Zacharin, M., Oexle, K., Marcelino, J., Suwairi, W., Heeger, S., Sabatakos, G., Apte, S., Adkins, W. N., Allgrove, J., & Arslan-Kirchner, M. (2001). LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 107, 513–523.

    Article  CAS  PubMed  Google Scholar 

  74. Little, R. D., Carulli, J. P., Del Mastro, R. G., Dupuis, J., Osborne, M., Folz, C., Manning, S. P., Swain, P. M., Zhao, S. C., Eustace, B., Lappe, M. M., Spitzer, L., Zweier, S., Braunschweiger, K., Benchekroun, Y., Hu, X., Adair, R., Chee, L., FitzGerald, M. G., … Johnson, M. L. (2002). A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. The American Journal of Human Genetics, 70, 11–19.

    Article  CAS  PubMed  Google Scholar 

  75. Boyden, L. M., Mao, J., Belsky, J., Mitzner, L., Farhi, A., Mitnick, M. A., Wu, D., Insogna, K., & Lifton, R. P. (2002). High bone density due to a mutation in LDL-receptor-related protein 5. New England Journal of Medicine, 346, 1513–1521.

    Article  CAS  PubMed  Google Scholar 

  76. Chang, M. K., Kramer, I., Keller, H., Gooi, J. H., Collett, C., Jenkins, D., Ettenberg, S. A., Cong, F., Halleux, C., & Kneissel, M. (2014). Reversing LRP5-dependent osteoporosis and SOST deficiency-induced sclerosing bone disorders by altering WNT signaling activity. Journal of Bone and Mineral Research, 29, 29–42.

    Article  CAS  PubMed  Google Scholar 

  77. Qiu, W., Andersen, T. E., Bollerslev, J., Mandrup, S., Abdallah, B. M., & Kassem, M. (2007). Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. Journal of Bone and Mineral Research, 22, 1720–1731.

    Article  CAS  PubMed  Google Scholar 

  78. Kato, M., Patel, M. S., Levasseur, R., Lobov, I., Chang, B. H., Glass, D. A., 2nd., Hartmann, C., Li, L., Hwang, T. H., Brayton, C. F., Lang, R. A., Karsenty, G., & Chan, L. (2002). Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. The Journal of Cell Biology, 157, 303–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang, N., Song, W. X., Luo, J., Luo, X., Chen, J., Sharff, K. A., Bi, Y., He, B. C., Huang, J. Y., Zhu, G. H., & Su, Y. X. (2023). BMP9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/β-catenin signalling. Journal of Cellular and Molecular Medicine, 27, 1155–1156.

    Article  Google Scholar 

  80. Semenov, M. V., Habas, R., Macdonald, B. T., & He, X. (2007). SnapShot: Noncanonical Wnt signaling pathways. Cell, 131, 1378.

    Article  PubMed  Google Scholar 

  81. Butler, M. T., & Wallingford, J. B. (2017). Planar cell polarity in development and disease. Nature Reviews Molecular Cell Biology, 18, 375–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nikolopoulou, E., Galea, G. L., Rolo, A., Greene, N. D., & Copp, A. J. (2017). Neural tube closure: Cellular, molecular and biomechanical mechanisms. Development, 144, 552–566.

    Article  CAS  PubMed  Google Scholar 

  83. Clark, C. E., Nourse, C. C., & Cooper, H. M. (2012). The tangled web of non-canonical Wnt signalling in neural migration. Neurosignals, 20, 202–220.

    Article  CAS  PubMed  Google Scholar 

  84. VanderVorst, K., Dreyer, C. A., Konopelski, S. E., Lee, H., Ho, H. H., & Carraway, K. L., 3rd. (2019). Wnt/PCP Signaling Contribution to Carcinoma Collective Cell Migration and Metastasis. Cancer Research, 79, 1719–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Habas, R., Kato, Y., & He, X. (2001). Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell, 107, 843–854.

    Article  CAS  PubMed  Google Scholar 

  86. Yang, Y., & Mlodzik, M. (2015). Wnt-Frizzled/planar cell polarity signaling: Cellular orientation by facing the wind (Wnt). Annual Review of Cell and Developmental Biology, 31, 623–646.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sonomoto, K., Yamaoka, K., Oshita, K., Fukuyo, S., Zhang, X., Nakano, K., Okada, Y., & Tanaka, Y. (2012). Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis and Rheumatism, 64, 3355–3363.

    Article  CAS  PubMed  Google Scholar 

  88. Kramer, I., Halleux, C., Keller, H., Pegurri, M., Gooi, J. H., Weber, P. B., Feng, J. Q., Bonewald, L. F., & Kneissel, M. (2010). Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Molecular and Cellular Biology, 30, 3071–3085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gu, Q., Tian, H., Zhang, K., Chen, D., Chen, D., Wang, X., & Zhao, J. (2018). Wnt5a/FZD4 Mediates the Mechanical Stretch-Induced Osteogenic Differentiation of Bone Mesenchymal Stem Cells. Cellular Physiology and Biochemistry, 48, 215–226.

    Article  CAS  PubMed  Google Scholar 

  90. Chen, L., Zhao, X., Liang, G., Sun, J., Lin, Z., Hu, R., Chen, P., Zhang, Z., Zhou, L., & Li, Y. (2017). Recombinant SFRP5 protein significantly alleviated intrahepatic inflammation of nonalcoholic steatohepatitis. Nutrition & Metabolism (London), 14, 56.

    Article  Google Scholar 

  91. Liu, L. B., Chen, X. D., Zhou, X. Y., & Zhu, Q. (2018). The Wnt antagonist and secreted frizzled-related protein 5: implications on lipid metabolism, inflammation, and type 2 diabetes mellitus. Bioscience Reports, 38(4), BSR20180011.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Xie, Q., Chen, L., Shan, X., Shan, X., Tang, J., Zhou, F., Chen, Q., Quan, H., Nie, D., Zhang, W., Huang, A. L., & Tang, N. (2014). Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signaling pathway. International Journal of Cancer, 135, 635–646.

    Article  CAS  PubMed  Google Scholar 

  93. Zheng, Y. (2018). Role and mechanism of sFRP5 in bone tissue changes in high-fat diet mice.

  94. Zou, D. P., Chen, Y. M., Zhang, L. Z., Yuan, X. H., Zhang, Y. J., Inggawati, A., Kieu Nguyet, P. T., Gao, T. W., & Chen, J. (2020). SFRP5 inhibits melanin synthesis of melanocytes in vitiligo by suppressing the Wnt/β-catenin signaling. Genes Dis., 8, 677–688.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang, B., Pan, Y., Yang, G., Cui, Z., Yu, W., Liu, H., & Bai, B. (2021). Sfrp5/Wnt5a and leptin/ adiponectin levels in the serum and the periarterial adipose tissue of patients with peripheral arterial occlusive disease. Clinical Biochemistry, 87, 46–51.

    Article  CAS  PubMed  Google Scholar 

  96. Sun, M., Wang, W., Min, L., Chen, C., Li, Q., & Weng, W. (2021). Secreted frizzled-related protein 5 (SFRP5) protects ATDC5 cells against LPS-induced inflammation and apoptosis via inhibiting Wnt5a/JNK pathway. Journal of Orthopaedic Surgery and Research, 16, 129.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Li, Q., Zuo, L. L., Lin, Y. Q., Xu, Y. O., Zhu, J. J., Liao, H. H., Lin, S., Xiong, X. R., & Wang, Y. (2016). Cloning and Expression of SFRP5 in Tibetan Chicken and its Relationship with IMF Deposition. Animal Biotechnology, 27, 231–237.

    Article  CAS  PubMed  Google Scholar 

  98. Shi, Z., Xu, M., Chen, X., Wang, J., Zhao, T., & Zha, D. (2021). The regulatory role of SFRP5/ WNT5A axis in allergic rhinitis through inhibitingJNK pathway activation and lowering mucin generation in human nasal epithelial cells. Experimental and Molecular Pathology, 118, 104591.

    Article  CAS  PubMed  Google Scholar 

  99. Wang, R., Hong, J., Liu, R., Chen, M., Xu, M., Gu, W., Zhang, Y., Ma, Q., Wang, F., Shi, J., Wang, J., Wang, W., & Ning, G. (2014). SFRP5 acts as a mature adipocyte marker but not as a regulator in adipogenesis. Journal of Molecular Endocrinology, 53, 405–415.

    Article  CAS  PubMed  Google Scholar 

  100. Cho, Y. K., Kang, Y. M., Lee, S. E., Lee, Y., Seol, S. M., Lee, W. J., Park, J. Y., & Jung, C. H. (2018). Effect of SFRP5 (Secreted Frizzled-Related Protein 5) on the WNT5A (Wingless-Type Family Member 5A)-Induced Endothelial Dysfunction and Its Relevance With Arterial Stiffness in Human Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1358–1367.

    Article  CAS  PubMed  Google Scholar 

  101. Lojk, J., & Marc, J. (2021). Roles of non-canonical wnt signalling pathways in bone biology. International Journal of Molecular Sciences, 22(19), 10840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang, L., Yang, J., Pan, T., & Zhong, X. (2019). Liraglutide increases bone formation and inhibits bone resorption in rats with glucocorticoid-induced osteoporosis. Journal of Endocrinological Investigation, 42, 1125–1131.

    Article  CAS  PubMed  Google Scholar 

  103. Liu, H., Zhan, Y. L., Luo, G. J., Zou, L. L., Li, Y., & Lu, H. Y. (2020). Liraglutide and insulin have contrary effects on adipogenesis of human adipose-derived stem cells via wnt pathway. Diabetes, Metabolic Syndrome and Obesity, 13, 3075–3087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Iepsen, E. W., Lundgren, J. R., Hartmann, B., Pedersen, O., Hansen, T., Jørgensen, N. R., Jensen, J. E., Holst, J. J., Madsbad, S., & Torekov, S. S. (2015). GLP-1 Receptor Agonist Treatment Increases Bone Formation and Prevents Bone Loss in Weight-Reduced Obese Women. Journal of Clinical Endocrinology and Metabolism, 100, 2909–2917.

    Article  CAS  PubMed  Google Scholar 

  105. Pereira, M., Jeyabalan, J., Jørgensen, C. S., Hopkinson, M., Al-Jazzar, A., Roux, J. P., Chavassieux, P., Orriss, I. R., Cleasby, M. E., & Chenu, C. (2015). Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone, 81, 459–467.

    Article  CAS  PubMed  Google Scholar 

  106. Wu, X., Li, S., Xue, P., & Li, Y. (2017). Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving β-catenin. Experimental Cell Research, 360, 281–291.

    Article  CAS  PubMed  Google Scholar 

  107. Chen, K., Wu, R., Mo, B., Yan, X., Shen, D., & Chen, M. (2021). Comparison between liraglutide alone and liraglutide in combination with insulin on osteoporotic rats and their effect on bone mineral density. Journal of Musculoskeletal and Neuronal Interactions, 21, 142–148.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang, C., & Gao, M. (2022). Effects of Lilalutide and Alfacalcidol on Blood Glucose, Bone Metabolism, SFRP5 and IGF-1 Levels in Elderly Type 2 diabetes Patients with Osteoporosis. Clinical Medical Research and Practice., 7, 63–66.

    Google Scholar 

  109. Brennan, T. C., Rizzoli, R., & Ammann, P. (2009). Selective modification of bone quality by PTH, pamidronate, or raloxifene. Journal of Bone and Mineral Research, 24, 800–808.

    Article  CAS  PubMed  Google Scholar 

  110. Yang, F., Jia, Y., Sun, Q., Zheng, C., Liu, C., Wang, W., Du, L., Kang, S., Niu, X., & Li, J. (2020). Raloxifene improves TNF-α-induced osteogenic differentiation inhibition of bone marrow mesenchymal stem cells and alleviates osteoporosis. Experimental and Therapeutic Medicine, 20, 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heo, H. A., Park, S., Jeon, Y. S., & Pyo, S. W. (2019). Effect of Raloxifene Administration on Bone Response Around Implant in the Maxilla of Osteoporotic Rats. Implant Dentistry, 28, 272–278.

    Article  PubMed  Google Scholar 

  112. Gizzo, S., Saccardi, C., Patrelli, T. S., Berretta, R., Capobianco, G., Di Gangi, S., Vacilotto, A., Bertocco, A., Noventa, M., Ancona, E., D’Antona, D., & Nardelli, G. B. (2013). Update on raloxifene: Mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstetrical & Gynecological Survey, 68, 467–481.

    Article  Google Scholar 

  113. Park, S., Heo, H. A., Min, J. S., & Pyo, S. W. (2020). Effect of Raloxifene on Bone Formation Around Implants in the Osteoporotic Rat Maxilla: Histomorphometric and Microcomputed Tomographic Analysis. International Journal of Oral and Maxillofacial Implants, 35, 249–456.

    Article  PubMed  Google Scholar 

  114. Shen, H. H., Yang, C. Y., Kung, C. W., Chen, S. Y., Wu, H. M., Cheng, P. Y., Lam, K. K., & Lee, Y. M. (2019). Raloxifene inhibits adipose tissue inflammation and adipogenesis through Wnt regulation in ovariectomized rats and 3 T3–L1 cells. Journal of Biomedical Science, 26(1), 1–12.

    Article  CAS  Google Scholar 

Download references

Funding

This review gets grants from the National Natural Science Foundation of China (Grant No.82060872), the Scientific Research Program of Gansu Chinese Medicine Bureau (Grant GZKP-2023-39, and GZKP-2023-63), Research and Reform Project of Graduate Education and Teaching at Gansu University of Chinese Medicine (Grant 15), Teaching Research and Reform Project of Gansu University of Chinese Medicine (Grant YBXM-202332, and ZHXM-202307), and Gansu Province Higher Education Youth Doctoral Fund Project (Grant No.2022QB-091).

Author information

Authors and Affiliations

Authors

Contributions

The conception and design of this manuscript was completed by CY. The first draft of this manuscript was written by FA and JS, and FA, JS are co-first authors. The figures and table of the manuscript were made by WC, JZ, PG, YW, and ZX. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Chunlu Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to the publication of the article.

Human and Animal Participants

In addition, this article contains no studies involving human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, F., Song, J., Chang, W. et al. Research Progress on the Mechanism of the SFRP-Mediated Wnt Signalling Pathway Involved in Bone Metabolism in Osteoporosis. Mol Biotechnol 66, 975–990 (2024). https://doi.org/10.1007/s12033-023-01018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01018-0

Keywords

Navigation