Skip to main content

Advertisement

Log in

Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, microneedle (MN) patches have emerged as an alternative technology for transdermal delivery of various drugs, therapeutics proteins, and vaccines. Therefore, there is an urgent need to understand the status of MN-based therapeutics. The article aims to illustrate the current status of microneedle array technology for therapeutic delivery through a comprehensive review. However, the PubMed search was performed to understand the MN's therapeutics delivery status. At the same time, the search shows the number no of publications on MN is increasing (63). The search was performed with the keywords “Coated microneedle,” “Hollow microneedle,” “Dissolvable microneedle,” and “Hydrogel microneedle,” which also shows increasing trend. Similarly, the article highlighted the application of different microneedle arrays for treating different diseases. The article also illustrated the current status of different phases of MN-based therapeutics clinical trials. It discusses the delivery of different therapeutic molecules, such as drug molecule delivery, using microneedle array technology. The approach mainly discusses the delivery of different therapeutic molecules. The leading pharmaceutical companies that produce the microneedle array for therapeutic purposes have also been discussed. Finally, we discussed the limitations and future prospects of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used to support the findings of this article included within the article.

Abbreviations

APCs:

Antigen presenting cells

MN:

Microneedle

TPMA:

Titanium porous microneedle array

MEMS:

Microelectro-mechanical systems

sCT:

Salmon calcitonin

PLGA:

Poly (lactic-co-glycolic acid)

T2D:

Type 2 diabetes

CGRP:

Calcitonin gene related peptide

PGA:

Poly-glycolic acid

FI-RSV:

Formalin-inactivated respiratory syncytial virus

M2e VLP:

Matrix protein 2 virus-like particle

ACE2:

Angiotensin-converting enzyme 2

MILD:

Mushroom-inspired imprintable and lightly detachable

DMNA:

Dissolvable microneedle array

AAV:

Adeno-associated virus

References

  1. Prausnitz, M. R. (2004). Microneedles for transdermal drug delivery. Advanced Drug Delivery Reviews, 56, 581–587.

    Article  CAS  PubMed  Google Scholar 

  2. Paudel, K. S., Milewski, M., Swadley, C. L., Brogden, N. K., Ghosh, P., & Stinchcomb, A. L. (2010). Challenges and opportunities in dermal/transdermal delivery. Therapeutic Delivery, 1, 109–131.

    Article  CAS  PubMed  Google Scholar 

  3. Suh, H., Shin, J., & Kim, Y. C. (2014). Microneedle patches for vaccine delivery. Clinical and Experimental Vaccine Research, 3, 42–49.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Mayahy, M. H., Sabri, A. H., Rutland, C. S., Holmes, A., McKenna, J., Marlow, M., & Scurr, D. J. (2019). Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. European Journal of Pharmaceutics and Biopharmaceutics, 139, 33–43.

    Article  CAS  PubMed  Google Scholar 

  5. Alkilani, A. Z., McCrudden, M. T., & Donnelly, R. F. (2015). Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 7, 438–470.

    Article  CAS  PubMed  Google Scholar 

  6. Garland, M. J., Migalska, K., Mahmood, T. M., Singh, T. R., Woolfson, A. D., & Donnelly, R. F. (2011). Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Review of Medical Devices, 8, 459–482.

    Article  CAS  PubMed  Google Scholar 

  7. Quan, F. S., Kim, Y. C., Compans, R. W., Prausnitz, M. R., & Kang, S. M. (2010). Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. Journal of Controlled Release, 147, 326–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mistilis, M. J., Joyce, J. C., Esser, E. S., Skountzou, I., Compans, R. W., Bommarius, A. S., & Prausnitz, M. R. (2017). Long-term stability of influenza vaccine in a dissolving microneedle patch. Drug Delivery and Translational Research, 7, 195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wedlock, P. T., Mitgang, E. A., Elsheikh, F., Leonard, J., Bakal, J., Welling, J., Crawford, J., Assy, E., Magadzire, B. P., Bechtel, R., DePasse, J. V., Siegmund, Sheryl S., Brown, S. T., & Lee, B. Y. (2019). The potential effects of introducing microneedle patch vaccines into routine vaccine supply chains. Vaccine, 37, 645–651.

    Article  PubMed  Google Scholar 

  10. Iwata, H., Kakita, K., Imafuku, K., Takashima, S., Haga, N., Yamaguchi, Y., Taguchi, K., & Oyamada, T. (2022). Safety and dose-sparing effect of Japanese encephalitis vaccine administered by microneedle patch in uninfected, healthy adults (MNA-J): A randomised, partly blinded, active-controlled, phase 1 trial. The Lancet Microbe, 3, e96–e104.

    Article  CAS  PubMed  Google Scholar 

  11. Rouphael, N. G., Paine, M., Mosley, R., Henry, S., McAllister, D. V., Kalluri, H., Pewin, W., Frew, P. M., Yu, T., Thornburg, N. J., Kabbani, S., Lai, L., Vassilieva, E. V., Skountzou, I., Compans, R. W., Mulligan, M. J., Prausnitz, M. R., Beck, A., Edupuganti, Srilatha, & ⋯ Wendy Nesheim. (2017). The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. The Lancet, 390, 649–658.

    Article  CAS  Google Scholar 

  12. Zheng, X., Zhu, J., Zheng, C., Tan, Z., Ji, Z., Tao, J., Zhao, Y., & Hu, Y. (2023). Dissolving microneedle arrays as a hepatitis B vaccine delivery system adjuvanted by APC-Targeted Poly (Lactic-co-Glycolic Acid) (PLGA) nanoparticles. An Official Journal of the American Association of Pharmaceutical Scientists, 24, 42.

    CAS  Google Scholar 

  13. Fan, F., Zhang, X., Zhang, Z., Ding, Y., Wang, L., Xu, X., Pan, Y., Gong, F. Y., Jiang, L., Kang, L., Ha, Z., Lu, H., Hou, J., Kou, Z., Zhao, G., Wang, B., & Gao, X. M. (2023). Potent immunogenicity and broad-spectrum protection potential of microneedle array patch-based COVID-19 DNA vaccine candidates encoding dimeric RBD chimera of SARS-CoV and SARS-CoV-2 variants. Emerging Microbes & Infections, 12, 2202269.

    Article  Google Scholar 

  14. Feng, Y. X., Hu, H., Wong, Y. Y., Yao, X., & He, M. L. (2023). Microneedles: An emerging vaccine delivery tool and a prospective solution to the challenges of SARS-CoV-2 mass vaccination. Pharmaceutics, 15, 1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McNamee, M., Wong, S., Guy, O., & Sharma, S. (2023). Microneedle technology for potential SARS-CoV-2 vaccine delivery. Expert Opinion on Drug Delivery, 20, 799–814.

    Article  CAS  PubMed  Google Scholar 

  16. Nazary Abrbekoh, F., Salimi, L., Saghati, S., Amini, H., Fathi Karkan, S., Moharamzadeh, K., Sokullu, E., & Rahbarghazi, R. (2022). Application of microneedle patches for drug delivery; doorstep to novel therapies. Journal of Tissue Engineering, 13, 20417314221085390. https://doi.org/10.1177/20417314221085390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Menon, I., Bagwe, P., Gomes, K. B., Bajaj, L., Gala, R., Uddin, M. N., D’Souza, M. J., & Zughaier, S. M. (2021). Microneedles: A new generation vaccine delivery system. Micromachines (Basel), 12(4), 435. https://doi.org/10.3390/mi12040435

    Article  PubMed  Google Scholar 

  18. Peyraud, N., Zehrung, D., Jarrahian, C., Frivold, C., Orubu, T., & Giersing, B. (2019). Potential use of microarray patches for vaccine delivery in low- and middle- income countries. Vaccine, 37(32), 4427–4434. https://doi.org/10.1016/j.vaccine.2019.03.035

    Article  CAS  PubMed  Google Scholar 

  19. Priya, S., & Singhvi, G. (2022). Microneedles-based drug delivery strategies: A breakthrough approach for the management of pain. Biomedicine & Pharmacotherapy, 155, 113717. https://doi.org/10.1016/j.biopha.2022.113717

    Article  CAS  Google Scholar 

  20. Peng, T., Chen, Y., Hu, W., Huang, Y., Zhang, M., Lu, C., Pan, X., Wu, C. (2023). Microneedles for enhanced topical treatment of skin disorders: Applications, challenges, and prospects. Engineering (in press). https://doi.org/10.1016/j.eng.2023.05.009

  21. Ma, S., Li, J., Pei, L., Feng, N., & Zhang, Y. (2023). Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects. Journal of Pharmaceutical Analysis, 13(2), 111–126.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee, M. S., Pan, C. X., & Nambudiri, V. E. (2021). Transdermal approaches to vaccinations in the COVID-19 pandemic era. Therapeutic Advances in Vaccines and Immunotherapy, 9, 25151355211039070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bilal, M., Mehmood, S., Raza, A., Hayat, U., Rasheed, T., & Iqbal, H. M. N. (2021). Microneedles in smart drug delivery. Advances in Wound Care (New Rochelle), 10(4), 204–219.

    Article  Google Scholar 

  24. Mansoor, I., Eassa, H. A., Mohammed, K. H. A., Abd El-Fattah, M. A., Abdo, M. H., Rashad, E., Eassa, H. A., Saleh, A., Amin, O. M., Nounou, M. I., & Ghoneim, O. (2022). Microneedle-based vaccine delivery: Review of an emerging technology. An Official Journal of the American Association of Pharmaceutical Scientists, 23(4), 103.

    CAS  Google Scholar 

  25. McAlister, E., Kearney, M. C., Martin, E. L., & Donnelly, R. F. (2021). From the laboratory to the end-user: A primary packaging study for microneedle patches containing amoxicillin sodium. Drug Delivery and Translational Research, 11(5), 2169–2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Donnelly, R. F., Raj Singh, T. R., & Woolfson, A. D. (2010). Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Delivery, 17(4), 187–207.

    Article  CAS  PubMed  Google Scholar 

  27. Avcil, M., & Çelik, A. (2021). Microneedles in drug delivery: Progress and challenges. Micromachines (Basel), 12(11), 1321.

    Article  PubMed  Google Scholar 

  28. Jung, J. H., & Jin, S. G. (2021). Microneedle for transdermal drug delivery: Current trends and fabrication. Journal of Pharmaceutical Investigation, 51(5), 503–517.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Larrañeta, E., Lutton, R. E., Woolfson, A. D., & Donnelly, R. F. (2016). Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering: R: Reports, 1(104), 1–32.

    Article  Google Scholar 

  30. Migdadi, E. M., Courtenay, A. J., Tekko, I. A., McCrudden, M. T. C., Kearney, M. C., McAlister, E., McCarthy, H. O., & Donnelly, R. F. (2018). Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. Journal of Controlled Release, 285, 142–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niu, L., Chu, L. Y., Burton, S. A., Hansen, K. J., & Panyam, J. (2019). Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. Journal of Controlled Release, 294, 268–278.

    Article  CAS  PubMed  Google Scholar 

  32. Leone, M., Monkare, J., Bouwstra, J. A., & Kersten, G. (2017). Dissolving microneedle patches for dermal vaccination. Pharmaceutical Research, 34, 2223–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davis, S. P., Martanto, W., Allen, M. G., & Prausnitz, M. R. (2005). Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Transactions on Biomedical Engineering, 52, 909–915.

    Article  PubMed  Google Scholar 

  34. Gholami, S., Mohebi, M. M., Hajizadeh-Saffar, E., Ghanian, M. H., Zarkesh, I., & Baharvand, H. (2019). Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery. International Journal of Pharmaceutics, 558, 299–310.

    Article  CAS  PubMed  Google Scholar 

  35. Singh, P., Carrier, A., Chen, Y., Lin, S., Wang, J., Cui, S., & Zhang, X. (2019). Polymeric microneedles for controlled transdermal drug delivery. Journal of Controlled Release, 315, 97–113.

    Article  CAS  PubMed  Google Scholar 

  36. Li, J., Liu, B., Zhou, Y., Chen, Z., Jiang, L., Yuan, W., & Liang, L. (2017). Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS ONE, 12, e0172043.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Courtenay, A. J., McAlister, E., McCrudden, M. T. C., Vora, L., Steiner, L., Levin, G., Levy-Nissenbaum, E., Shterman, N., Kearney, M. C., McCarthy, H. O., & Donnelly, R. F. (2020). Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. Journal of Controlled Release, 322, 177–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Plamadeala, C., Gosain, S. R., Hischen, F., Buchroithner, B., Puthukodan, S., Jacak, J., Bocchino, A., Whelan, D., O’Mahony, C., Baumgartner, W., & Heitz, J. (2019). Bio-inspired microneedle design for efficient drug/vaccine coating. Biomedical Microdevices, 22, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wei-Ze, L., Mei-Rong, H., Jian-Ping, Z., Yong-Qiang, Z., Bao-Hua, H., Ting, L., & Yong, Z. (2010). Super-short solid silicon microneedles for transdermal drug delivery applications. International Journal of Pharmaceutics, 389, 122–129.

    Article  Google Scholar 

  40. Li, J., Zeng, M., Shan, H., & Tong, C. (2017). Microneedle patches as drug and vaccine delivery platform. Current Medicinal Chemistry, 24, 2413–2422.

    Article  CAS  PubMed  Google Scholar 

  41. Ita, K. (2015). Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics, 7, 90–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prausnitz, M. R. (2017). Engineering microneedle patches for vaccination and drug delivery to skin. Annual Review of Chemical and Biomolecular Engineering, 8, 177–200.

    Article  CAS  PubMed  Google Scholar 

  43. Li, Q. Y., Zhang, J. N., Chen, B. Z., Wang, Q. L., & Guo, X. D. (2017). A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Advances, 7, 15408–15415.

    Article  CAS  Google Scholar 

  44. van der Maaden, K., Sekerdag, E., Jiskoot, W., & Bouwstra, J. (2014). Impact-insertion applicator improves reliability of skin penetration by solid microneedle arrays. The AAPS Journal, 16, 681–684.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Y., Brown, K., Siebenaler, K., Determan, A., Dohmeier, D., & Hansen, K. (2012). Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharmaceutical Research, 29, 170–177.

    Article  PubMed  Google Scholar 

  46. Tzafriri, A. R., Muraj, B., Garcia-Polite, F., Salazar-Martín, A. G., Markham, P., Zani, B., Spognardi, A., Albaghdadi, M., Alston, S., & Edelman, E. R. (2020). Balloon-based drug coating delivery to the artery wall is dictated by coating micro-morphology and angioplasty pressure gradients. Biomaterials, 260, 120337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jeong, H.-R., Jun, H., Cha, H.-R., Lee, J. M., & Park, J.-H. (2020). Safe coated microneedles with reduced puncture occurrence after administration. Micromachines, 11, 710.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yang, J., Liu, X., Fu, Y., & Song, Y. (2019). Recent advances of microneedles for biomedical applications: Drug delivery and beyond. Acta Pharmaceutica Sinica B, 9, 469–483.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yu, L., Tay, F., Guo, D., Xu, L., & Yap, K. (2009). A microfabricated electrode with hollow microneedles for ECG measurement. Sensors and Actuators A: Physical, 151, 17–22.

    Article  CAS  Google Scholar 

  50. Donnelly, R. F., Majithiya, R., Singh, T. R. R., Morrow, D. I., Garland, M. J., Demir, Y. K., Migalska, K., Ryan, E., Gillen, D., & Scott, C. J. (2011). Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharmaceutical Research, 28, 41–57.

    Article  CAS  PubMed  Google Scholar 

  51. Cárcamo-Martínez, Á., Mallon, B., Anjani, Q. K., Domínguez-Robles, J., Utomo, E., Vora, L. K., Tekko, I., Larrañeta, E., & Donnelly, R. F. (2020). Enhancing intradermal delivery of tofacitinib citrate: Comparison between powder-loaded hollow microneedle arrays and dissolving microneedle arrays. International Journal of Pharmaceutics, 593, 120152.

    Article  PubMed  Google Scholar 

  52. Zhang, L., Li, Y., Wei, F., Liu, H., Wang, Y., Zhao, W., Dong, Z., Ma, T., & Wang, Q. (2020). Transdermal delivery of salmon calcitonin using a dissolving microneedle array: Characterization, stability, and in vivo pharmacodynamics. An Official Journal of the American Association of Pharmaceutical Scientists, 22, 1–9.

    CAS  Google Scholar 

  53. Kabir, S. F., Sikdar, P. P., Haque, B., Bhuiyan, M. R., Ali, A., & Islam, M. (2018). Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Progress in Biomaterials, 7, 153–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitura, S., Sionkowska, A., & Jaiswal, A. (2020). Biopolymers for hydrogels in cosmetics. Journal of Materials Science: Materials in Medicine, 31, 1–14.

    Google Scholar 

  55. Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H. M., & Tran, S. D. (2019). Smart hydrogels in tissue engineering and regenerative medicine. Materials, 12, 3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Turner, J. G., White, L. R., Estrela, P., & Leese, H. S. (2020). Hydrogel-forming microneedles: Current advancements and future trends. Macromolecular Bioscience, 21, 2000307.

    Article  Google Scholar 

  57. Huber, L. A., Pereira, T. A., Ramos, D. N., Rezende, L. C., Emery, F. S., Sobral, L. M., Leopoldino, A. M., & Lopez, R. F. (2015). Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and lontophoresis. Journal of Biomedical Nanotechnology, 11, 1975–1988.

    Article  CAS  PubMed  Google Scholar 

  58. Moreira, A. F., Rodrigues, C. F., Jacinto, T. A., Miguel, S. P., Costa, E. C., & Correia, I. J. (2019). Microneedle-based delivery devices for cancer therapy: A review. Pharmacological Research, 148, 104438.

    Article  CAS  PubMed  Google Scholar 

  59. Chen, G., Yu, J., & Gu, Z. (2019). Glucose-responsive microneedle patches for diabetes treatment. Journal of Diabetes Science and Technology, 13, 41–48.

    Article  PubMed  Google Scholar 

  60. Jana, B. A., & Wadhwani, A. D. (2019). Microneedle: Future prospect for efficient drug delivery in diabetes management. Indian Journal of Pharmacology, 51, 4–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller, P. R., Narayan, R. J., & Polsky, R. (2016). Microneedle-based sensors for medical diagnosis. Journal Material Chemistry B, 4, 1379–1383.

    Article  CAS  Google Scholar 

  62. How, K. N., Yap, W. H., Lim, C. L. H., Goh, B. H., & Lai, Z. W. (2020). Hyaluronic acid-mediated drug delivery system targeting for inflammatory skin diseases: A mini review. Frontiers in Pharmacology, 11, 1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie, X., Pascual, C., Lieu, C., Oh, S., Wang, J., Zou, B., Xie, J., Li, Z., Xie, J., Yeomans, D. C., Wu, M. X., & Xie, X. S. (2017). Analgesic microneedle patch for neuropathic pain therapy. ACS Nano, 11, 395–406.

    Article  CAS  PubMed  Google Scholar 

  64. Ramoller, I. K., Tekko, I. A., McCarthy, H. O., & Donnelly, R. F. (2019). Rapidly dissolving bilayer microneedle arrays: A minimally invasive transdermal drug delivery system for vitamin B12. International Journal of Pharmaceutics, 566, 299–306.

    Article  CAS  PubMed  Google Scholar 

  65. Lee, S. G., Jeong, J. H., Lee, K. M., Jeong, K. H., Yang, H., Kim, M., Jung, H., Lee, S., & Choi, Y. W. (2014). Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule. International Journal of Nanomedicine, 9, 289–299.

    PubMed  Google Scholar 

  66. Yang, J., Chen, Z., Ye, R., Li, J., Lin, Y., Gao, J., Ren, L., Liu, B., & Jiang, L. (2018). Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Delivery, 25, 1728–1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bhatnagar, S., Saju, A., Cheerla, K. D., Gade, S. K., Garg, P., & Venuganti, V. V. K. (2018). Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles. Drug Delivery and Translational Research, 8, 473–483.

    Article  CAS  PubMed  Google Scholar 

  68. González-Vázquez, P., Larrañeta, E., McCrudden, M. T., Jarrahian, C., Rein-Weston, A., Quintanar-Solares, M., Zehrung, D., McCarthy, H., Courtenay, A. J., & Donnelly, R. F. (2017). Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. Journal of Controlled Release, 265, 30–40.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lee, H. S., Ryu, H. R., Roh, J. Y., & Park, J.-H. (2017). Bleomycin-coated microneedles for treatment of warts. Pharmaceutical Research, 34, 101–112.

    Article  CAS  PubMed  Google Scholar 

  70. Anjani, Q. K., Permana, A. D., Cárcamo-Martínez, Á., Domínguez-Robles, J., Tekko, I. A., Larrañeta, E., Vora, L. K., Ramadon, D., & Donnelly, R. F. (2020). Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. European Journal of Pharmaceutics and Biopharmaceutics, 158, 294–312.

    Article  PubMed  Google Scholar 

  71. Nguyen, A. K., Yang, K.-H., Bryant, K., Li, J., Joice, A. C., Werbovetz, K. A., & Narayan, R. J. (2019). Microneedle-based delivery of amphotericin B for treatment of cutaneous leishmaniasis. Biomedical Microdevices, 21, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kim, H.-G., Gater, D. L., & Kim, Y.-C. (2018). Development of transdermal vitamin D3 (VD3) delivery system using combinations of PLGA nanoparticles and microneedles. Drug Delivery and Translational Research, 8, 281–290.

    Article  CAS  PubMed  Google Scholar 

  73. Ramöller, I. K., Tekko, I. A., McCarthy, H. O., & Donnelly, R. F. (2019). Rapidly dissolving bilayer microneedle arrays–A minimally invasive transdermal drug delivery system for vitamin B12. International Journal of Pharmaceutics, 566, 299–306.

    Article  PubMed  Google Scholar 

  74. Hutton, A. R., Quinn, H. L., McCague, P. J., Jarrahian, C., Rein-Weston, A., Coffey, P. S., Gerth-Guyette, E., Zehrung, D., Larrañeta, E., & Donnelly, R. F. (2018). Transdermal delivery of vitamin K using dissolving microneedles for the prevention of vitamin K deficiency bleeding. International Journal of Pharmaceutics, 541, 56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Menon, A., Eram, H., Kamath, P. R., Goel, S., & Babu, A. M. (2020). A split face comparative study of safety and efficacy of microneedling with tranexamic acid versus microneedling with Vitamin C in the treatment of melasma. Indian Dermatology Online Journal, 11, 41.

    Article  PubMed  Google Scholar 

  76. Lee, C.-A., Baek, J.-S., Kwag, D.-G., Lee, H.-J., Park, J., & Cho, C.-W. (2017). Enhancement of skin permeation of vitamin C using vibrating microneedles. Translational and Clinical Pharmacology, 25, 15–20.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chaudhuri, B.P., Ceyssens, F., Celen, S., Bormans, G., Kraft, M., & Puers, R. (2019). In-vivo intradermal delivery of Co-57 labeled Vitamin B-12, and subsequent comparison with standard subcutaneous administration. In: 2019 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 1670–1673). IEEE.

  78. Courtenay, A. J., McCrudden, M. T. C., McAvoy, K. J., McCarthy, H. O., & Donnelly, R. F. (2018). Microneedle-mediated transdermal delivery of bevacizumab. Molecular Pharmaceutics, 15, 3545–3556.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, C., Ye, Y., Hochu, G. M., Sadeghifar, H., & Gu, Z. (2016). Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano letters, 16, 2334–2340.

    Article  CAS  PubMed  Google Scholar 

  80. Korkmaz, E., Friedrich, E. E., Ramadan, M. H., Erdos, G., Mathers, A. R., Ozdoganlar, O. B., Washburn, N. R., & Falo, L. D., Jr. (2016). Tip-loaded dissolvable microneedle arrays effectively deliver polymer-conjugated antibody inhibitors of tumor-necrosis-factor-alpha into human skin. Journal of Pharmaceutical Sciences, 105, 3453–3457.

    Article  CAS  PubMed  Google Scholar 

  81. Mönkäre, J., Nejadnik, M. R., Baccouche, K., Romeijn, S., Jiskoot, W., & Bouwstra, J. A. (2015). IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. Journal of Controlled Release, 218, 53–62.

    Article  PubMed  Google Scholar 

  82. Li, G., Badkar, A., Nema, S., Kolli, C. S., & Banga, A. K. (2009). In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. International Journal of Pharmaceutics, 368, 109–115.

    Article  CAS  PubMed  Google Scholar 

  83. Pettis, R. J., Ginsberg, B., Hirsch, L., Sutter, D., Keith, S., McVey, E., Harvey, N. G., Hompesch, M., Nosek, L., & Kapitza, C. (2011). Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection. Diabetes Technology & Therapeutics, 13, 435–442.

    Article  CAS  Google Scholar 

  84. Gupta, J., Felner, E. I., & Prausnitz, M. R. (2011). Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects. Diabetes Technology & Therapeutics, 13, 451–456.

    Article  Google Scholar 

  85. Yu, J., Zhang, Y., Ye, Y., DiSanto, R., Sun, W., Ranson, D., Ligler, F. S., Buse, J. B., & Gu, Z. (2015). Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences USA, 112, 8260–8265.

    Article  CAS  Google Scholar 

  86. Kim, S., Yang, H., Eum, J., Ma, Y., Fakhraei Lahiji, S., & Jung, H. (2020). Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity. Biomaterials, 232, 119733.

    Article  CAS  PubMed  Google Scholar 

  87. Tong, Z., Zhou, J., Zhong, J., Tang, Q., Lei, Z., Luo, H., Ma, P., & Liu, X. (2018). Glucose-and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Applied Materials & Interfaces, 10, 20014–20024.

    Article  CAS  Google Scholar 

  88. Wang, Z., Wang, J., Li, H., Yu, J., Chen, G., Kahkoska, A. R., Wu, V., Zeng, Y., Wen, D., & Miedema, J. R. (2020). Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proceedings of the National Academy of Sciences, 117, 29512–29517.

    Article  CAS  Google Scholar 

  89. Chen, B. Z., Zhang, L. Q., Xia, Y. Y., Zhang, X. P., & Guo, X. D. (2020). A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Science Advances, 6, eaba7260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, S., & Lee, D. Y. (2017). Glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. Annals of Pediatric Endocrinology & Metabolism, 22, 15–26.

    Article  Google Scholar 

  91. Liu, S., Wu, D., Quan, Y. S., Kamiyama, F., Kusamori, K., Katsumi, H., Sakane, T., & Yamamoto, A. (2016). Improvement of transdermal delivery of Exendin-4 using novel tip-loaded microneedle arrays fabricated from hyaluronic acid. Molecular Pharmaceutics, 13, 272–279.

    Article  CAS  PubMed  Google Scholar 

  92. Rong, L., & Perelson, A. S. (2010). Treatment of hepatitis C virus infection with interferon and small molecule direct antivirals: viral kinetics and modeling. Critical Reviews in Immunology, 30, 131–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kusamori, K., Katsumi, H., Sakai, R., Hayashi, R., Hirai, Y., Tanaka, Y., Hitomi, K., Quan, Y.-s, Kamiyama, F., & Yamada, K. (2016). Development of a drug-coated microneedle array and its application for transdermal delivery of interferon alpha. Biofabrication, 8, 015006.

    Article  PubMed  Google Scholar 

  94. Chen, J., Qiu, Y., Zhang, S., & Gao, Y. (2016). Dissolving microneedle-based intradermal delivery of interferon-α-2b. Drug Development and Industrial Pharmacy, 42, 890–896.

    Article  CAS  PubMed  Google Scholar 

  95. Tas, C., Mansoor, S., Kalluri, H., Zarnitsyn, V. G., Choi, S.-O., Banga, A. K., & Prausnitz, M. R. (2012). Delivery of salmon calcitonin using a microneedle patch. International Journal of Pharmaceutics, 423, 257–263.

    Article  CAS  PubMed  Google Scholar 

  96. Donnelly, R. F., Garland, M. J., & Alkilani, A. Z. (2014). Microneedle-iontophoresis combinations for enhanced transdermal drug delivery. Drug delivery system (pp. 121–132). Springer.

    Chapter  Google Scholar 

  97. Vemulapalli, V., Bai, Y., Kalluri, H., Herwadkar, A., Kim, H., Davis, S. P., Friden, P. M., & Banga, A. K. (2012). In vivo iontophoretic delivery of salmon calcitonin across microporated skin. Journal of Pharmaceutical Sciences, 101, 2861–2869.

    Article  CAS  PubMed  Google Scholar 

  98. Boopathy, A. V., Mandal, A., Kulp, D. W., Menis, S., Bennett, N. R., Watkins, H. C., Wang, W., Martin, J. T., Thai, N. T., He, Y., Schief, W. R., Hammond, P. T., & Irvin, D. J. (2019). Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proceedings of the National Academy of Sciences, 116, 16473–16478.

    Article  CAS  Google Scholar 

  99. Raphael, A. P., Prow, T. W., Crichton, M. L., Chen, X., Fernando, G. J., & Kendall, M. A. (2010). Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small (Weinheim an der Bergstrasse, Germany), 6, 1785–1793.

    Article  CAS  PubMed  Google Scholar 

  100. Fernando, G. J., Chen, X., Prow, T. W., Crichton, M. L., Fairmaid, E. J., Roberts, M. S., Frazer, I. H., Brown, L. E., & Kendall, M. A. (2010). Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model. PLoS ONE, 5, e10266.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ono, A., Azukizawa, H., Ito, S., Nakamura, Y., Asada, H., Quan, Y. S., Kamiyama, F., Katayama, I., Hirobe, S., & Okada, N. (2017). Development of novel double-decker microneedle patches for transcutaneous vaccine delivery. International Journal of Pharmaceutics, 532, 374–383.

    Article  CAS  PubMed  Google Scholar 

  102. Koutsonanos, D. G., Vassilieva, E. V., Stavropoulou, A., Zarnitsyn, V. G., Esser, E. S., Taherbhai, M. T., Prausnitz, M. R., Compans, R. W., & Skountzou, I. (2012). Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Science and Reports, 2, 357.

    Article  Google Scholar 

  103. Arnou, R., Icardi, G., De Decker, M., Ambrozaitis, A., Kazek, M. P., Weber, F., & Van Damme, P. (2009). Intradermal influenza vaccine for older adults: A randomized controlled multicenter phase III study. Vaccine, 27, 7304–7312.

    Article  CAS  PubMed  Google Scholar 

  104. Van Damme, P., Oosterhuis-Kafeja, F., Van der Wielen, M., Almagor, Y., Sharon, O., & Levin, Y. (2009). Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine, 27, 454–459.

    Article  PubMed  Google Scholar 

  105. Weldon, W. C., Zarnitsyn, V. G., Esser, E. S., Taherbhai, M. T., Koutsonanos, D. G., Vassilieva, E. V., Skountzou, I., Prausnitz, M. R., & Compans, R. W. (2012). Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PLoS ONE, 7, e41501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Weldon, W. C., Martin, M. P., Zarnitsyn, V., Wang, B., Koutsonanos, D., Skountzou, I., Prausnitz, M. R., & Compans, R. W. (2011). Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. Clinical and Vaccine Immunology, 18, 647–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, Y., Ye, L., Lin, F., Gomaa, Y., Flyer, D., Carrion, R., Jr., Patterson, J. L., Prausnitz, M. R., Smith, G., Glenn, G., Wu, H., Compans, R. W., & Yang, C. (2018). Intradermal immunization by Ebola virus GP subunit vaccines using microneedle patches protects mice against lethal EBOV challenge. Scientific Reports, 8, 11193.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Duong, H. T. T., Kim, N. W., Thambi, T., Giang Phan, V. H., Lee, M. S., Yin, Y., Jeong, J. H., & Lee, D. S. (2018). Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. Journal of Controlled Release, 269, 225–234.

    Article  CAS  PubMed  Google Scholar 

  109. Chen, F., Yan, Q., Yu, Y., & Wu, M. X. (2017). BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination. Journal of Controlled Release, 255, 36–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kutzler, M. A., & Weiner, D. B. (2008). DNA vaccines: Ready for prime time? Nature Reviews Genetics, 9, 776–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim, Y. C., Song, J. M., Lipatov, A. S., Choi, S. O., Lee, J. W., Donis, R. O., Compans, R. W., Kang, S. M., & Prausnitz, M. R. (2012). Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. European Journal of Pharmaceutics and Biopharmaceutics, 81, 239–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Song, J. M., Kim, Y. C., Barlow, P. G., Hossain, M. J., Park, K. M., Donis, R. O., Prausnitz, M. R., Compans, R. W., & Kang, S. M. (2010). Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles. Antiviral Research, 88, 244–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Coulman, S. A., Barrow, D., Anstey, A., Gateley, C., Morrissey, A., Wilke, N., Allender, C., Brain, K., & Birchall, J. C. (2006). Minimally invasive cutaneous delivery of macromolecules and plasmid DNA via microneedles. Current Drug Delivery, 3, 65–75.

    Article  CAS  PubMed  Google Scholar 

  114. Fernando, G. J., Zhang, J., Ng, H. I., Haigh, O. L., Yukiko, S. R., & Kendall, M. A. (2016). Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (Nanopatch) induces potent antibody and CD8(+) T cell responses. Journal of Controlled Release, 237, 35–41.

    Article  CAS  PubMed  Google Scholar 

  115. Fernando, G. J., Chen, X., Primiero, C. A., Yukiko, S. R., Fairmaid, E. J., Corbett, H. J., Frazer, I. H., Brown, L. E., & Kendall, M. A. (2012). Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody responses. Journal of Controlled Release, 159, 215–221.

    Article  CAS  PubMed  Google Scholar 

  116. Kask, A. S., Chen, X., Marshak, J. O., Dong, L., Saracino, M., Chen, D., Jarrahian, C., Kendall, M. A., & Koelle, D. M. (2010). DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge. Vaccine, 28, 7483–7491.

    Article  CAS  PubMed  Google Scholar 

  117. Gill, H. S., Soderholm, J., Prausnitz, M. R., & Sallberg, M. (2010). Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Therapy, 17, 811–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mikszta, J. A., Alarcon, J. B., Brittingham, J. M., Sutter, D. E., Pettis, R. J., & Harvey, N. G. (2002). Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nature Medicine, 8, 415–419.

    Article  CAS  PubMed  Google Scholar 

  119. Arya, J. M., Dewitt, K., Scott-Garrard, M., Chiang, Y. W., & Prausnitz, M. R. (2016). Rabies vaccination in dogs using a dissolving microneedle patch. Journal of Controlled Release, 239, 19–26.

    Article  CAS  PubMed  Google Scholar 

  120. Moon, S., Wang, Y., Edens, C., Gentsch, J. R., Prausnitz, M. R., & Jiang, B. (2013). Dose sparing and enhanced immunogenicity of inactivated rotavirus vaccine administered by skin vaccination using a microneedle patch. Vaccine, 31, 3396–3402.

    Article  CAS  PubMed  Google Scholar 

  121. Kommareddy, S., Baudner, B. C., Oh, S., Kwon, S. Y., Singh, M., & O’Hagan, D. T. (2012). Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. Journal of Pharmaceutical Sciences, 101, 1021–1027.

    Article  CAS  PubMed  Google Scholar 

  122. Sullivan, S. P., Koutsonanos, D. G., Del Pilar, M. M., Lee, J. W., Zarnitsyn, V., Choi, S. O., Murthy, N., Compans, R. W., Skountzou, I., & Prausnitz, M. R. (2010). Dissolving polymer microneedle patches for influenza vaccination. Nature Medicine, 16, 915–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, Y. C., Quan, F. S., Yoo, D. G., Compans, R. W., Kang, S. M., & Prausnitz, M. R. (2009). Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine, 27, 6932–6938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dean, C. H., Alarcon, J. B., Waterston, A. M., Draper, K., Early, R., Guirakhoo, F., Monath, T. P., & Mikszta, J. A. (2005). Cutaneous delivery of a live, attenuated chimeric flavivirus vaccine against Japanese encephalitis (ChimeriVax)-JE) in non-human primates. Human Vaccines, 1, 106–111.

    Article  CAS  PubMed  Google Scholar 

  125. Chu, L. Y., Ye, L., Dong, K., Compans, R. W., Yang, C., & Prausnitz, M. R. (2016). Enhanced stability of inactivated influenza vaccine encapsulated in dissolving microneedle patches. Pharmaceutical Research, 33, 868–878.

    Article  CAS  PubMed  Google Scholar 

  126. Choi, H. J., Bondy, B. J., Yoo, D. G., Compans, R. W., Kang, S. M., & Prausnitz, M. R. (2013). Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles. Journal of Controlled Release, 166, 159–171.

    Article  CAS  PubMed  Google Scholar 

  127. Kim, Y. C., Quan, F. S., Compans, R. W., Kang, S. M., & Prausnitz, M. R. (2010). Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. Journal of Controlled Release, 142, 187–195.

    Article  CAS  PubMed  Google Scholar 

  128. Edens, C., Collins, M. L., Goodson, J. L., Rota, P. A., & Prausnitz, M. R. (2015). A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine, 33, 4712–4718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Carey, J. B., Pearson, F. E., Vrdoljak, A., McGrath, M. G., Crean, A. M., Walsh, P. T., Doody, T., O’Mahony, C., Hill, A. V., & Moore, A. C. (2011). Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice. PLoS ONE, 6, e22442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Erdos, G., Balmert, S. C., Carey, C. D., Falo, G. D., Patel, N. A., Zhang, J., Gambotto, A., Korkmaz, E., & Falo, L. D., Jr. (2020). Improved cutaneous genetic immunization by microneedle array delivery of an adjuvanted adenovirus vaccine. The Journal of Investigative Dermatology, 140, 2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Turvey, M. E., Uppu, D., Mohamed Sharif, A. R., Bidet, K., Alonso, S., Ooi, E. E., & Hammond, P. T. (2019). Microneedle-based intradermal delivery of stabilized dengue virus. Bioengineering & Translational Medicine, 4, e10127.

    Article  Google Scholar 

  132. Park, S., Lee, Y., Kwon, Y. M., Lee, Y. T., Kim, K. H., Ko, E. J., Jung, J. H., Song, M., Graham, B., Prausnitz, M. R., & Kang, S. M. (2018). Vaccination by microneedle patch with inactivated respiratory syncytial virus and monophosphoryl lipid A enhances the protective efficacy and diminishes inflammatory disease after challenge. PLoS ONE, 13, e0205071.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Braz Gomes, K., Vijayanand, S., Bagwe, P., Menon, I., Kale, A., Patil, S., Kang, S.-M., Uddin, M. N., & D’Souza, M. J. (2023). Vaccine-induced immunity elicited by microneedle delivery of influenza ectodomain matrix protein 2 virus-like particle (M2e VLP)-loaded PLGA nanoparticles. International Journal of Molecular Sciences, 24, 10612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim, E., Erdos, G., Huang, S., Kenniston, T. W., Balmert, S. C., Carey, C. D., Raj, V. S., Epperly, M. W., Klimstra, W. B., Haagmans, B. L., & Korkmaz, E. (2020). Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine, 55, 102743.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Le Thanh, T., Andreadakis, Z., Kumar, A., Gomez Roman, R., Tollefsen, S., Saville, M., & Mayhew, S. (2020). The COVID-19 vaccine development landscape. Nature Reviews Drug Discovery, 19, 305–306.

    Article  Google Scholar 

  136. Zhang, Y., Zheng, N., Hao, P., Cao, Y., & Zhong, Y. (2005). A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2. Computational Biology and Chemistry, 29, 254–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Falo, L. D., Jr. (2020). Advances in skin science enable the development of a COVID-19 vaccine. Journal of the American Academy of Dermatology, 83, 1226–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, Q., Xu, R., Fan, H., Xu, J., Xu, Y., Cao, P., Zhang, Y., Liang, T., Chen, W., Wang, Z., & Chen, X. (2022). Smart mushroom-inspired imprintable and lightly detachable (MILD) microneedle patterns for effective COVID-19 vaccination and decentralized information storage. ACS Nano, 16, 7512–7524.

    Article  CAS  PubMed  Google Scholar 

  139. Li, L., Zhao, Z., Yang, X., Su, Z., Li, W., Chen, S., Wang, L., Sun, T., Du, C., Li, Z., Wang, T., Wang, Y., Fan, Y., Wang, H., & Zhang, J. (2023). A newly identified spike protein targeted linear B-cell epitope based dissolvable microneedle array successfully eliciting neutralizing activities against SARS-CoV-2 wild-type strain in mice. Advanced Science (Weinh), 10, e2207474.

    Article  Google Scholar 

  140. Tran, K. T. M., Gavitt, T. D., Le, T. T., Graichen, A., Lin, F., Liu, Y., Tulman, E. R., Szczepanek, S. M., & Nguyen, T. D. (2022). A single-administration microneedle skin patch for multi-burst release of vaccine against SARS-CoV-2. Advanced Materials Technologies, 8, 2200905.

    Article  Google Scholar 

  141. Patil, S., Vijayanand, S., Joshi, D., Menon, I., Braz Gomes, K., Kale, A., Bagwe, P., Yacoub, S., Uddin, M. N., & D’Souza, M. J. (2023). Subunit microparticulate vaccine delivery using microneedles trigger significant SARS-spike-specific humoral and cellular responses in a preclinical murine model. International Journal of Pharmaceutics, 632, 122583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kapnick, S. M. (2022). The nanoparticle-enabled success of COVID-19 mRNA vaccines and the promise of microneedle platforms for pandemic vaccine response. DNA and Cell Biology, 41, 25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Guillot, A. J., Cordeiro, A. S., Donnelly, R. F., Montesinos, M. C., Garrigues, T. M., & Melero, A. (2020). Microneedle-based delivery: An overview of current applications and trends. Pharmaceutics, 12, 569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gualeni, B., Coulman, S., Shah, D., Eng, P., Ashraf, H., Vescovo, P., Blayney, G., Piveteau, L. D., Guy, O., & Birchall, J. (2018). Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices. British Journal of Dermatology, 178, 731–739.

    Article  CAS  PubMed  Google Scholar 

  145. Chen, Y.-H., Lin, D.-C., Chern, E., & Huang, Y.-Y. (2020). The use of micro-needle arrays to deliver cells for cellular therapies. Biomedical Microdevices, 22, 1–8.

    Article  Google Scholar 

  146. Farias, C., Lyman, R., Hemingway, C., Chau, H., Mahacek, A., Bouzos, E., & Mobed-Miremadi, M. (2018). Three-dimensional (3D) printed microneedles for microencapsulated cell extrusion. Bioengineering, 5, 59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tang, J., Wang, J., Huang, K., Ye, Y., Su, T., Qiao, L., Hensley, M. T., Caranasos, T. G., Zhang, J., & Gu, Z. (2018). Cardiac cell–integrated microneedle patch for treating myocardial infarction. Science Advances, 4, eaat9365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Benson, P. J. (2018). A stem cell–integrated microneedle patch. American Association for the Advancement of Science, 362, 1014–1015.

    Google Scholar 

  149. Lee, K., Xue, Y., Lee, J., Kim, H. J., Liu, Y., Tebon, P., Sarikhani, E., Sun, W., Zhang, S., & Haghniaz, R. (2020). A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Advanced Functional Materials, 30, 2000086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen, W., Li, H., Shi, D., Liu, Z., & Yuan, W. (2016). Microneedles as a delivery system for gene therapy. Frontiers in Pharmacology, 7, 137.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Shi, H., Xue, T., Yang, Y., Jiang, C., Huang, S., Yang, Q., Lei, D., You, Z., Jin, T., & Wu, F. (2020). Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease. Science Advances, 6, eaaz3621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ita, K. (2017). Dermal/transdermal delivery of small interfering RNA and antisense oligonucleotides-advances and hurdles. Biomedicine & Pharmacotherapy, 87, 311–320.

    Article  CAS  Google Scholar 

  153. Pan, J., Ruan, W., Qin, M., Long, Y., Wan, T., Yu, K., Zhai, Y., Wu, C., & Xu, Y. (2018). Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Scientific Reports, 8, 1–11.

    Google Scholar 

  154. Pires, L. R., Vinayakumar, K. B., Turos, M., Miguel, V., & Gaspar, J. (2019). A perspective on microneedle-based drug delivery and diagnostics in paediatrics. Journal of Personalized Medicine, 9(4), 49.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhang, W., Zhang, W., Li, C., Zhang, J., Qin, L., & Lai, Y. (2022). Recent advances of microneedles and their application in disease treatment. International Journal of Molecular Sciences, 23(5), 2401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kulkarni, D., Damiri, F., Rojekar, S., Zehravi, M., Ramproshad, S., Dhoke, D., Musale, S., Mulani, A. A., Modak, P., Paradhi, R., Vitore, J., Rahman, M. H., Berrada, M., Giram, P. S., & Cavalu, S. (2022). Recent advancements in microneedle technology for multifaceted biomedical Applications. Pharmaceutics, 14(5), 1097. https://doi.org/10.3390/pharmaceutics14051097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Waghule, T., Singhvi, G., Dubey, S. K., Pandey, M. M., Gupta, G., Singh, M., & Dua, K. (2019). Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine & Pharmacotherapy, 109, 1249–1258.

    Article  CAS  Google Scholar 

  158. Baker-Sediako, R. D., Richter, B., Blaicher, M., Thiel, M., & Hermatschweiler, M. (2023). Industrial perspectives for personalized microneedles. Beilstein Journal of Nanotechnology, 14, 857–864.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Alimardani, V., Abolmaali, S. S., Yousefi, G., Rahiminezhad, Z., Abedi, M., Tamaddon, A., & Ahadian, S. (2021). Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics. Journal of Clinical Medicine, 10(2), 181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang, R., Jiang, G., Aharodnikau, U. E., Yunusov, K., Sun, Y., Liu, T., & Solomevich, S. O. (2022). Recent advances in polymer microneedles for drug transdermal delivery: Design strategies and applications. Macromolecular Rapid Communications, 43(8), e2200037.

    Article  PubMed  Google Scholar 

  161. Chen, Z., He, J., Qi, J., Zhu, Q., Wu, W., & Lu, Y. (2020). Long-acting microneedles: A progress report of the state-of-the-art techniques. Drug Discovery Today, 25(8), 1462–1468.

    Article  CAS  PubMed  Google Scholar 

  162. Xie, Z., Zhang, X., Chen, G., Che, J., & Zhang, D. (2022). Wearable microneedle-integrated sensors for household health monitoring. Engineered Regeneration, 3(4), 420–426.

    Article  Google Scholar 

  163. Economidou, S. N., & Douroumis, D. (2021). 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Advanced Drug Delivery Reviews, 173, 60–69.

    Article  CAS  PubMed  Google Scholar 

  164. Dabholkar, N., Gorantla, S., Waghule, T., Rapalli, V. K., Kothuru, A., Goel, S., & Singhvi, G. (2021). Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. International Journal of Biological Macromolecules, 170, 602–621. https://doi.org/10.1016/j.ijbiomac.2020.12.177

    Article  CAS  Google Scholar 

  165. Moffatt, K., Wang, Y., Raj Singh, T. R., & Donnelly, R. F. (2017). Microneedles for enhanced transdermal and intraocular drug delivery. Current Opinion in Pharmacology, 36, 14–21.

    Article  CAS  PubMed  Google Scholar 

  166. O’Shea, J., Prausnitz, M. R., & Rouphael, N. (2021). Dissolvable: Microneedle patches to enable increased access to vaccines against SARS-CoV-2 and future pandemic outbreaks. Vaccines (Basel), 9(4), 320.

    Article  CAS  PubMed  Google Scholar 

  167. Coppola, S., Vespini, V., D'Avino, G., Grilli, S., Maffettone, & P.L., Ferraro, P. (2021) Biocompatible micro-needles for smart therapy. In: 2021 IEEE 8th International workshop on metrology for AeroSpace (MetroAeroSpace) (pp. 459–463). IEEE.

  168. Prausnitz, M. R., Goodson, J. L., Rota, P. A., & Orenstein, W. A. (2020). A microneedle patch for measles and rubella vaccination: A game changer for achieving elimination. Current Opinion in Virology, 41, 68–76.

    Article  PubMed  PubMed Central  Google Scholar 

  169. O’Shea, J., Prausnitz, M. R., & Rouphael, N. (2021). Dissolvable microneedle patches to enable increased access to vaccines against SARS-CoV-2 and future pandemic outbreaks. Vaccines (Basel), 9(4), 320.

    Article  CAS  PubMed  Google Scholar 

  170. Rozaini, M. N., Semail, N. F., Zango, Z. U., Lim, J. W., Yahaya, N., Setiabudi, H. D., Tong, W. Y., Shamsuddin, R., Chan, Y. J., Khoo, K. S., & Suliman, M. (2023). Advanced adsorptions of non-steroidal anti-inflammatory drugs from environmental waters in improving offline and online preconcentration techniques: An analytical review. Journal of the Taiwan Institute of Chemical Engineers. https://doi.org/10.1016/j.jtice.2023.105020

    Article  Google Scholar 

  171. Chen, W., Cai, B., Geng, Z., Chen, F., Wang, Z., Wang, L., & Chen, X. (2020). Reducing false negatives in COVID-19 testing by using microneedle-based oropharyngeal swabs. Matter, 3, 1589–1600.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Hiraishi, Y., Nakagawa, T., Quan, Y.-S., Kamiyama, F., Hirobe, S., Okada, N., & Nakagawa, S. (2013). Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system. International Journal of Pharmaceutics, 441, 570–579.

    Article  CAS  PubMed  Google Scholar 

  173. Kommareddy, S., Baudner, B. C., Oh, S., Kwon, S.-y, Singh, M., & O’hagan DT,. (2012). Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. Journal of Pharmaceutical Sciences, 101, 1021–1027.

    Article  CAS  PubMed  Google Scholar 

  174. Atmar, R. L., Patel, S. M., & Keitel, W. A. (2010). Intanza®: A new intradermal vaccine for seasonal influenza. Expert Review of Vaccines, 9, 1399–1409.

    Article  CAS  PubMed  Google Scholar 

  175. Hoon, S. H., Hee, J. W., Weber, F., Joo, K. W., Ran, P. K., Il Kim, S., Hwa, Y. C., & Myung, K. J. (2013). Immunogenicity and safety of Intanza®/IDflu® intradermal influenza vaccine in South Korean adults: A multicenter, randomized trial. Human Vaccines & Immunotherapeutics, 9, 1971–1977.

    Article  Google Scholar 

  176. Matriano, J. A., Cormier, M., Johnson, J., Young, W. A., Buttery, M., Nyam, K., & Daddona, P. E. (2002). Macroflux® microprojection array patch technology: A new and efficient approach for intracutaneous immunization. Pharmaceutical Research, 19, 63–70.

    Article  CAS  PubMed  Google Scholar 

  177. Malik, D. K., Baboota, S., Ahuja, A., Hasan, S., & Ali. (2007). Recent advances in protein and peptide drug delivery systems. Current Drug Delivery, 4, 141–151.

    Article  CAS  PubMed  Google Scholar 

  178. Shi, X.-Y., & Tan, T.-W. (2002). Preparation of chitosan/ethylcellulose complex microcapsule and its application in controlled release of vitamin D2. Biomaterials, 23, 4469–4473.

    Article  CAS  PubMed  Google Scholar 

  179. Shi, X., & Tan, T. (2003). Preparation of complex chitosan microcapsule and its application in controlled release of vitamin D2. Journal of Biomedical Engineering, 20, 26.

    CAS  PubMed  Google Scholar 

  180. Hung, I. F., Levin, Y., To, K. K., Chan, K.-H., Zhang, A. J., Li, P., Li, C., Xu, T., Wong, T.-Y., & Yuen, K.-Y. (2012). Dose sparing intradermal trivalent influenza (2010/2011) vaccination overcomes reduced immunogenicity of the 2009 H1N1 strain. Vaccine, 30, 6427–6435.

    Article  CAS  PubMed  Google Scholar 

  181. Icardi, G., Orsi, A., Ceravolo, A., & Ansaldi, F. (2012). Current evidence on intradermal influenza vaccines administered by Soluvia™ licensed micro injection system. Human Vaccines & Immunotherapeutics, 8, 67–75.

    Article  CAS  Google Scholar 

  182. Joshi, M., Pathak, S., Sharma, S., & Patravale, V. (2008). Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. International Journal of Pharmaceutics, 364, 119–126.

    Article  CAS  PubMed  Google Scholar 

  183. Özkur, E., Kıvanç Altunay, İ, & Aydın, Ç. (2020). Psychopathology among individuals seeking minimally invasive cosmetic procedures. Journal of Cosmetic Dermatology, 19, 939–945.

    Article  PubMed  Google Scholar 

  184. Bandral, M. R., Padgavankar, P. H., Japatti, S. R., Gir, P. J., Siddegowda, C. Y., & Gir, R. J. (2019). Clinical evaluation of microneedling therapy in the management of facial scar: A prospective randomized study. Journal of Maxillofacial and Oral Surgery, 18, 572–578.

    Article  PubMed  Google Scholar 

  185. Kochba, E., Levin, Y., Raz, I., & Cahn, A. (2016). Improved insulin pharmacokinetics using a novel microneedle device for intradermal delivery in patients with type 2 diabetes. Diabetes Technology & Therapeutics, 18, 525–531.

    Article  CAS  Google Scholar 

  186. Dul, M., Stefanidou, M., Porta, P., Serve, J., O’Mahony, C., Malissen, B., Henri, S., Levin, Y., Kochba, E., & Wong, F. S. (2017). Hydrodynamic gene delivery in human skin using a hollow microneedle device. Journal of Controlled Release, 265, 120–131.

    Article  CAS  PubMed  Google Scholar 

  187. Peri, R., Aguilar, R. C., Tüffers, K., Erhardt, A., Link, A., Ehlermann, P., Angeli, W., Frank, T., Storr, M., & Glück, T. (2019). The impact of technical and clinical factors on fecal microbiota transfer outcomes for the treatment of recurrent Clostridioides difficile infections in Germany. United European Gastroenterology Journal, 7, 716–722.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Hagel, S., Stallmach, A., & Vehreschild, M. (2016). Fecal microbiota transplant in patients with recurrent clostridium difficile infection: A retrospective multicenter observational study from the MicroTrans registry. Deutsches Ärzteblatt International, 113, 583.

    PubMed  PubMed Central  Google Scholar 

  189. Dugam, S., Tade, R., Dhole, R., & Nangare, S. (2021). Emerging era of microneedle array for pharmaceutical and biomedical applications: Recent advances and toxicological perspectives. Future Journal of Pharmaceutical Sciences, 7, 19.

    Article  Google Scholar 

  190. Wilke, N., Hibert, C., O’Brien, J., & Morrissey, A. (2005). Silicon microneedle electrode array with temperature monitoring for electroporation. Sensors and Actuators A: Physical, 123, 319–325.

    Article  Google Scholar 

  191. Narayanan, S. P., & Raghavan, S. (2017). Solid silicon microneedles for drug delivery applications. The International Journal of Advanced Manufacturing Technology, 93, 407–422.

    Article  Google Scholar 

  192. Das, A., Singha, C., & Bhattacharyya, A. (2019). Development of silicon microneedle arrays with spontaneously generated micro-cavity ring for transdermal drug delivery. Microelectronic Engineering, 210, 14–18.

    Article  CAS  Google Scholar 

  193. Hopcroft, M. A., Nix, W. D., & Kenny, T. W. (2010). What is the Young’s modulus of silicon? Journal of Microelectromechanical Systems, 19, 229–238.

    Article  CAS  Google Scholar 

  194. Verbaan, F., Bal, S., Van den Berg, D., Groenink, W., Verpoorten, H., Lüttge, R., & Bouwstra, J. (2007). Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. Journal of Controlled Release, 117, 238–245.

    Article  CAS  PubMed  Google Scholar 

  195. Niinomi, M., & Nakai, M. (2011). Titanium-based biomaterials for preventing stress shielding between implant devices and bone. International Journal of Biomaterials. https://doi.org/10.1155/2011/836587

    Article  PubMed  PubMed Central  Google Scholar 

  196. Ayittey, P. N., Walker, J. S., Rice, J. J., & De Tombe, P. P. (2009). Glass microneedles for force measurements: A finite-element analysis model. Pflügers Archiv-European Journal of Physiology, 457, 1415.

    Article  CAS  PubMed  Google Scholar 

  197. Martin, C., Allender, C. J., Brain, K. R., Morrissey, A., & Birchall, J. C. (2012). Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. Journal of Controlled Release, 158, 93–101.

    Article  CAS  PubMed  Google Scholar 

  198. Verhoeven, M., Bystrova, S., Winnubst, L., Qureshi, H., De Gruijl, T. D., Scheper, R. J., & Luttge, R. (2012). Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model. Microelectronic Engineering, 98, 659–662.

    Article  CAS  Google Scholar 

  199. Ita, K. (2018). Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research. Journal of Drug Delivery Science and Technology, 44, 314–322.

    Article  CAS  Google Scholar 

  200. Larraneta, E., Lutton, R. E., Woolfson, A. D., & Donnelly, R. F. (2016). Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering: R: Reports, 104, 1–32.

    Article  Google Scholar 

  201. Lee, K., Lee, C. Y., & Jung, H. (2011). Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials, 32, 3134–3140.

    Article  CAS  PubMed  Google Scholar 

  202. GhavamiNejad, A., Li, J., Lu, B., Zhou, L., Lam, L., Giacca, A., & Wu, X. Y. (2019). Glucose-responsive composite microneedle patch for hypoglycemia-triggered delivery of native glucagon. Advanced Materials, 31, 1901051.

    Article  Google Scholar 

  203. Chu, L. Y., Choi, S.-O., & Prausnitz, M. R. (2010). Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. Journal of Pharmaceutical Sciences, 99, 4228–4238.

    Article  CAS  PubMed  Google Scholar 

  204. Han, M., Hyun, D.-H., Park, H.-H., Lee, S. S., Kim, C.-H., & Kim, C. (2007). A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. Journal of Micromechanics and Microengineering, 17, 1184.

    Article  CAS  Google Scholar 

  205. Aoyagi, S., Izumi, H., Isono, Y., Fukuda, M., & Ogawa, H. (2007). Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sensors and Actuators A: Physical, 139, 293–302.

    Article  CAS  Google Scholar 

  206. Meng, F., Hasan, A., Babadaei, M. M. N., Kani, P. H., Talaei, A. J., Sharifi, M., Cai, T., Falahati, M., & Cai, Y. (2020). Polymeric-based microneedle arrays as potential platforms in development of drugs delivery systems. Journal of Advanced Research, 26, 137–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Dong, L., Li, Y., Li, Z., Xu, N., Liu, P., Du, H., Zhang, Y., Huang, Y., Zhu, J., & Ren, G. (2018). Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Applied Materials & Interfaces, 10, 9247–9256.

    Article  CAS  Google Scholar 

  208. Uddin, M. J., Scoutaris, N., Economidou, S. N., Giraud, C., Chowdhry, B. Z., Donnelly, R. F., & Douroumis, D. (2020). 3D printed microneedles for anticancer therapy of skin tumours. Materials Science and Engineering C, 107, 110248.

    Article  CAS  PubMed  Google Scholar 

  209. Zhang, Y., Wu, M., Tan, D., Liu, Q., Xia, R., Chen, M., Liu, Y., Xue, L., & Lei, Y. (2020). A dissolving and glucose-responsive insulin releasing microneedle patch for type 1 diabetes therapy. Journal of Materials Chemistry B, 9, 648–657.

    Article  CAS  Google Scholar 

  210. Wu, M., Zhang, Y., Huang, H., Li, J., Liu, H., Guo, Z., Xue, L., Liu, S., & Lei, Y. (2020). Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Materials Science and Engineering C, 117, 111299.

    Article  CAS  PubMed  Google Scholar 

  211. Arikat, F., Hanna, S. J., Singh, R. K., Vilela, L., Wong, F. S., Dayan, C. M., Coulman, S. A., & Birchall, J. C. (2020). Targeting proinsulin to local immune cells using an intradermal microneedle delivery system; a potential antigen-specific immunotherapy for type 1 diabetes. Journal of Controlled Release, 322, 593–601.

    Article  CAS  PubMed  Google Scholar 

  212. Dangol, M., Kim, S., Li, C. G., Lahiji, S. F., Jang, M., Ma, Y., Huh, I., & Jung, H. (2017). Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. Journal of Controlled Release, 265, 41–47.

    Article  CAS  PubMed  Google Scholar 

  213. Zhang, Y., Liu, Q., Yu, J., Yu, S., Wang, J., Qiang, L., & Gu, Z. (2017). Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano, 11, 9223–9230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kearney, M.-C., Caffarel-Salvador, E., Fallows, S. J., McCarthy, H. O., & Donnelly, R. F. (2016). Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer’s disease. European Journal of Pharmaceutics and Biopharmaceutics, 103, 43–50.

    Article  CAS  PubMed  Google Scholar 

  215. Matsuo, K., Okamoto, H., Kawai, Y., Quan, Y.-S., Kamiyama, F., Hirobe, S., Okada, N., & Nakagawa, S. (2014). Vaccine efficacy of transcutaneous immunization with amyloid β using a dissolving microneedle array in a mouse model of Alzheimer’s disease. Journal of Neuroimmunology, 266, 1–11.

    Article  CAS  PubMed  Google Scholar 

  216. Steeb, T., Niesert, A.-C., French, L. E., Berking, C., & Heppt, M. V. (2020). Microneedling-assisted photodynamic therapy for the treatment of actinic keratosis: Results from a systematic review and meta-analysis. Journal of the American Academy of Dermatology, 82, 515–519.

    Article  PubMed  Google Scholar 

  217. Redfearn, D. P., Trim, G. M., Skanes, A. C., Petrellis, B., Krahn, A. D., Yee, R., & Klein, G. J. (2005). Esophageal temperature monitoring during radiofrequency ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 16, 589–593.

    Article  PubMed  Google Scholar 

  218. Kim, J. S., Choi, J.-a, Kim, J. C., Park, H., Yang, E., Park, J. S., Song, M., & Park, J.-H. (2020). Microneedles with dual release pattern for improved immunological efficacy of Hepatitis B vaccine. International Journal of Pharmaceutics, 591, 119928.

    Article  CAS  PubMed  Google Scholar 

  219. Tas, C., Joyce, J. C., Nguyen, H. X., Eangoor, P., Knaack, J. S., Banga, A. K., & Prausnitz, M. R. (2017). Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. Journal of Controlled Release, 268, 159–165.

    Article  CAS  PubMed  Google Scholar 

  220. Al-Naggar, M. R., Al-Adl, A. S., Rabie, A. R., Abdelkhalk, M. R., & Elsaie, M. L. (2019). Intralesional bleomycin injection vs microneedling-assisted topical bleomycin spraying in treatment of plantar warts. Journal of Cosmetic Dermatology, 18, 124–128.

    Article  PubMed  Google Scholar 

  221. Ryu, H. R., Jeong, H.-R., Seon-Woo, H.-S., Kim, J. S., Lee, S. K., Kim, H. J., Baek, J. O., Park, J.-H., & Roh, J. Y. (2018). Efficacy of a bleomycin microneedle patch for the treatment of warts. Drug Delivery and Translational Research, 8, 273–280.

    Article  CAS  PubMed  Google Scholar 

  222. Kaul, S., Kaur, I., Jakhar, D., Edigin, E., & Caldito, E. G. (2020). The diverse methods of bleomycin delivery in cutaneous warts: A literature review. Dermatologic Therapy, 34, e14401.

    PubMed  Google Scholar 

  223. Frew, P. M., Paine, M. B., Rouphael, N., Schamel, J., Chung, Y., Mulligan, M. J., & Prausnitz, M. R. (2020). Acceptability of an inactivated influenza vaccine delivered by microneedle patch: Results from a phase I clinical trial of safety, reactogenicity, and immunogenicity. Vaccine, 38, 7175–7181.

    Article  CAS  PubMed  Google Scholar 

  224. Ellison, T. J., Talbott, G. C., & Henderson, D. R. (2020). VaxiPatch™, a novel vaccination system comprised of subunit antigens, adjuvants and microneedle skin delivery: An application to influenza B/Colorado/06/2017. Vaccine, 38, 6839–6848.

    Article  CAS  PubMed  Google Scholar 

  225. Jeong, H.-R., Bae, J.-Y., Park, J.-H., Baek, S.-K., Kim, G., Park, M.-S., & Park, J.-H. (2020). Preclinical study of influenza bivalent vaccine delivered with a two compartmental microneedle array. Journal of Controlled Release, 324, 280–288.

    Article  CAS  PubMed  Google Scholar 

  226. Kuwentrai, C., Yu, J., Rong, L., Zhang Bz, Hu., Yf, Gong Hr, Dou, Y., Deng, J., Huang, J. D., & Xu, C. (2020). Intradermal delivery of receptor-binding domain of SARS-CoV-2 spike protein with dissolvable microneedles to induce humoral and cellular responses in mice. Bioengineering & Translational Medicine, 6, e102022.

    Google Scholar 

  227. Soltani-Arabshahi, R., Wong, J. W., Duffy, K. L., & Powell, D. L. (2014). Facial allergic granulomatous reaction and systemic hypersensitivity associated with microneedle therapy for skin rejuvenation. JAMA DERMATOLOGY, 150, 68–72.

    Article  PubMed  Google Scholar 

  228. Donnelly, R. F., Singh, T. R. R., Tunney, M. M., Morrow, D. I., McCarron, P. A., O’Mahony, C., & Woolfson, A. D. (2009). Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharmaceutical Research, 26, 2513–2522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Gill, H. S., Denson, D. D., Burris, B. A., & Prausnitz, M. R. (2008). Effect of microneedle design on pain in human subjects. The Clinical Journal of Pain, 24, 585.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Gill, H. S., & Prausnitz, M. R. (2007). Does needle size matter? Journal of Diabetes Science and Technology, 1, 725–729.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing-original draft, review and editing, supervision: CC; figure and table preparation, validation: MB. Validation, formal analysis: SSL; All authors have read and approved the final version of this manuscript.

Corresponding author

Correspondence to Chiranjib Chakraborty.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, C., Bhattacharya, M. & Lee, SS. Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00961-2

Keywords

Navigation