Skip to main content

Advertisement

Log in

The Potential of Circulating miR-193b, miR-146b-3p and miR-483-3p as Noninvasive Biomarkers in Cutaneous Melanoma Patients

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Melanoma is a destructive skin disease with few therapeutic options in the developed stage and therefore there is a critical need for reliable biomarkers for early diagnosis. In this context, microRNAs could play an important role as diagnostic biomarkers. Three datasets with accession numbers GSE31568, GSE61741 and GSE20994 were downloaded from the Gene Expression Omnibus (GEO) database. MATLAB software was used to analyze differentially expressed miRNAs between cutaneous melanoma plasma samples and normal plasma samples (control). Plasma levels of miR-193b, miR-146b-3p and miR-483-3p were evaluated by the RT-PCR method. Furthermore, linear regression followed by receiver operating characteristic analyses was performed to estimate whether selected plasma miRNAs were able to distinguish between cases and controls. Finally, the data were analyzed by unpaired Mann–Whitney U test using Graph pad prism 8 computer software. Specifically, miR-193b and miR-146b-3p were downregulated in the plasma of melanoma patients compared with control groups which were decreased 5 × \({10}^{6}\)-fold in miR-193b and 58-fold in miR-146b-3p, while miR-483-3p was upregulated 3.5-fold. After receiver operating characteristic (ROC) curve analysis, miR-193b with the most area under the curve (AUC: 1.00, 95% confidence interval 1.00–1.00, p < 0.0001) had the best discriminatory power, and miR-146b-3p had the large area under the curve (AUC: 0.96, 95% confidence interval 0.96–1.00, p < 0.0001) and consequently the high discriminatory power. Between these three miRNAs, miR-193b and miR-146b-3p had a high capacity to distinguish between melanoma patients and control groups that are appropriate to be applied in melanoma diagnosis as an early and noninvasive method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are unavailable due to privacy or ethical restrictions.

References

  1. Li, Z., Fang, Y., Chen, H., Zhang, T., Yin, X., Man, J., Yang, X., & Lu, M. (2022). Spatiotemporal trends of the global burden of melanoma in 204 countries and territories from 1990 to 2019: Results from the 2019 global burden of disease study. Neoplasia, 24(1), 12–21. https://doi.org/10.1016/j.neo.2021.11.013

    Article  PubMed  Google Scholar 

  2. Prasad, R., & Katiyar, S. K. (2014). Down-regulation of miRNA-106b inhibits growth of melanoma cells by promoting G1-phase cell cycle arrest and reactivation of p21/WAF1/Cip1 protein. Oncotarget, 5(21), 10636–10649. https://doi.org/10.18632/oncotarget.2527

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu, X., Fang, H., Chen, H., Jiang, X., Fang, D., Wang, Y., & Zhu, D. (2012). An artificial miRNA against HPSE suppresses melanoma invasion properties, correlating with a down-regulation of chemokines and MAPK phosphorylation. PLoS ONE. https://doi.org/10.1371/journal.pone.0038659

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bai, R., Huang, H., Li, M., & Chu, M. (2021). Temporal trends in the incidence and mortality of skin malignant melanoma in China from 1990 to 2019. Journal of Oncology, 2021, 9989824. https://doi.org/10.1155/2021/9989824

    Article  PubMed  PubMed Central  Google Scholar 

  5. Banerjee, S., Singh, S. K., Chakraborty, A., Das, A., & Bag, R. (2020). Melanoma diagnosis using deep learning and fuzzy logic. Diagnostics, 10(8), 577. https://doi.org/10.3390/diagnostics10080577

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cichorek, M., Wachulska, M., Stasiewicz, A., & Tymińska, A. (2013). Skin melanocytes: Biology and development. Postepy Dermatologii i Alergologii, 30(1), 30–41. https://doi.org/10.5114/pdia.2013.33376

    Article  PubMed  PubMed Central  Google Scholar 

  7. Varrone, F., & Caputo, E. (2020). The miRNAs role in melanoma and in its resistance to therapy. International Journal of Molecular Sciences, 21(3), 878. https://doi.org/10.3390/ijms21030878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gogas, H., Eggermont, A. M. M., Hauschild, A., Hersey, P., Mohr, P., Schadendorf, D., Spatz, A., & Dummer, R. (2009). Biomarkers in melanoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 20 Suppl 6(Suppl 6), vi8–vi13. https://doi.org/10.1093/annonc/mdp251

    Article  CAS  PubMed  Google Scholar 

  9. Mumford, S. L., Towler, B. P., Pashler, A. L., Gilleard, O., Martin, Y., & Newbury, S. F. (2018). Circulating microRNA biomarkers in melanoma: Tools and challenges in personalised medicine. Biomolecules, 8(2), 21. https://doi.org/10.3390/biom8020021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carpi, S., Polini, B., Fogli, S., Podestà, A., Ylösmäki, E., Cerullo, V., Romanini, A., & Nieri, P. (2020). Circulating microRNAs as biomarkers for early diagnosis of cutaneous melanoma. Expert Review of Molecular Diagnostics, 20(1), 19–30. https://doi.org/10.1080/14737159.2020.1696194

    Article  CAS  PubMed  Google Scholar 

  11. Lu, T., Chen, S., Qu, L., Wang, Y., Chen, H. D., & He, C. (2019). Identification of a five-miRNA signature predicting survival in cutaneous melanoma cancer patients. PeerJ. https://doi.org/10.7717/peerj.7831

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang, J., Fang, Y., Liu, Y. F., Wang, X., Wang, X. L., Wang, R. Y., & Meng, Z. D. (2019). MiR-154 inhibits cells proliferation and metastasis in melanoma by targeting AURKA and serves as a novel prognostic indicator. European Review for Medical and Pharmacological Sciences, 23(10), 4275–4284. https://doi.org/10.26355/eurrev_201905_17932

    Article  CAS  PubMed  Google Scholar 

  13. Friedman, E. B., Shang, S., de Miera, E. V., Fog, J. U., Teilum, M. W., Ma, M. W., Berman, R. S., Shapiro, R. L., Pavlick, A. C., Hernando, E., Baker, A., & Osman, I. (2012). Serum microRNAs as biomarkers for recurrence in melanoma. Journal of Translational Medicine, 10(1), 155. https://doi.org/10.1186/1479-5876-10-155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Neagu, M., Constantin, C., Cretoiu, S. M., & Zurac, S. (2020). miRNAs in the diagnosis and prognosis of skin cancer. Frontiers in Cell and Developmental Biology, 8, 71. https://doi.org/10.3389/fcell.2020.00071

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deacon, D. C., Smith, E. A., & Judson-Torres, R. L. (2021). Molecular biomarkers for melanoma screening, diagnosis and prognosis: Current state and future prospects. Frontiers in Medicine. https://doi.org/10.3389/fmed.2021.642380

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dahmke, I. N., Backes, C., Rudzitis-Auth, J., Laschke, M. W., Leidinger, P., Menger, M. D., Meese, E., & Mahlknecht, U. (2013). Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered. PLoS ONE. https://doi.org/10.1371/journal.pone.0081122

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., & Guegler, K. J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33(20), e179–e179. https://doi.org/10.1093/nar/gni178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghorbani, M., Pourjafar, F., Saffari, M., & Asgari, Y. (2020). Paclitaxel resistance resulted in a stem-like state in triple-negative breast cancer: A systems biology approach. Meta Gene, 26, 100800. https://doi.org/10.1016/j.mgene.2020.100800

    Article  Google Scholar 

  19. Akiyama, Y., Kiyohara, Y., Yoshikawa, S., Otsuka, M., Kondou, R., Nonomura, C., Miyata, H., Iizuka, A., Ashizawa, T., Ohshima, K., Urakami, K., Nagashima, T., Kusuhara, M., Sugino, T., & Yamaguchi, K. (2018). Immune response-associated gene profiling in Japanese melanoma patients using multi-omics analysis. Oncology Reports, 39(3), 1125–1131. https://doi.org/10.3892/or.2017.6173

    Article  CAS  PubMed  Google Scholar 

  20. Salehi, P., Tafvizi, F., & Kamyab Hesari, K. (2019). Low expression of occludin in the melanoma patient. Iranian Journal of Pathology, 14(4), 272–278. https://doi.org/10.30699/ijp.2019.85213.1801

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang, L. H., Wang, S. L., Tang, L. L., Liu, B., Ye, W. L., Wang, L. L., Wang, Z. Y., Zhou, M. T., & Chen, B. C. (2015). Universal stem-loop primer method for screening and quantification of microRNA. PLoS ONE, 9(12), e115293. https://doi.org/10.1371/journal.pone.0115293

    Article  CAS  Google Scholar 

  22. Shi, R., Sun, Y. -H., Zhang, X. -H., & Chiang, V. L. (2012). Poly(T) adaptor RT-PCR. In: Fan, JB. (eds), Next-generation microRNA expression profiling technology. Methods in Molecular Biology (pp. 53–66). Humana Press, Totowa, NJ

  23. Esmaeili-bandboni, A., Bagheri, J., Bakhshandeh, A. R., Mohammadnejad, J., & Sadroddiny, E. (2018). Serum levels of miR-155, miR-326, and miR-133b as early diagnostic biomarkers for the detection of human acute heart allograft rejection in comparison with serum cardiac troponin T. The Heart Surgery Forum, 21(2), E101–E107. https://doi.org/10.1532/hsf.1887

    Article  PubMed  Google Scholar 

  24. Busk, P. K. (2014). A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics, 15(1), 1–9. https://doi.org/10.1186/1471-2105-15-29

    Article  CAS  Google Scholar 

  25. Barartabar, Z., Moini, N., Abbasalipourkabir, R., Mesbah-Namin, S. A., & Ziamajidi, N. (2022). Investigation of miR-133a, miR-637 and miR-944 genes expression and their relationship with PI3K/AKT signaling in women with breast cancer.

  26. Bahramy, A., Zafari, N., Izadi, P., Soleymani, F., Kavousi, S., & Noruzinia, M. (2021). The role of miRNAs 340-5p, 92a-3p, and 381-3p in patients with endometriosis: A plasma and mesenchymal stem-like cell study. BioMed Research International, 2021, 5298006. https://doi.org/10.1155/2021/5298006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rao, X., Huang, X., Zhou, Z., & Lin, X. (2013). An improvement of the 2^(− delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, Bioinformatics and Biomathematics, 3(3), 71–85.

    PubMed  PubMed Central  Google Scholar 

  28. Garbe, C., Peris, K., Hauschild, A., Saiag, P., Middleton, M., Bastholt, L., Grob, J. J., Malvehy, J., Newton-Bishop, J., Stratigos, A. J., & Pehamberger, H. (2016). Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline—Update 2016. European Journal of Cancer, 63, 201–217. https://doi.org/10.1016/j.ejca.2016.05.005

    Article  PubMed  Google Scholar 

  29. Kordaß, T., Weber, C. E. M., Eisel, D., Pane, A. A., Osen, W., & Eichmüller, S. B. (2018). miR-193b and miR-30c-1(*) inhibit, whereas miR-576-5p enhances melanoma cell invasion in vitro. Oncotarget, 9(65), 32507–32522. https://doi.org/10.18632/oncotarget.25986

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang, Q., Xu, K., Tong, Y., Dai, X., Xu, T., He, D., & Ying, J. (2020). Novel miRNA markers for the diagnosis and prognosis of endometrial cancer. Journal of Cellular and Molecular Medicine, 24(8), 4533–4546. https://doi.org/10.1111/jcmm.15111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, J., Feilotter, H. E., Paré, G. C., Zhang, X., Pemberton, J. G., Garady, C., Lai, D., Yang, X., & Tron, V. A. (2010). MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. American Journal of Pathology, 176(5), 2520–2529. https://doi.org/10.2353/ajpath.2010.091061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, J., Abi-Daoud, M., Wang, A., Yang, X., Zhang, X., Feilotter, H. E., & Tron, V. A. (2013). Stathmin 1 is a potential novel oncogene in melanoma. Oncogene, 32(10), 1330–1337. https://doi.org/10.1038/onc.2012.141

    Article  CAS  PubMed  Google Scholar 

  33. Mitra, A. K., Chiang, C. Y., Tiwari, P., Tomar, S., Watters, K. M., Peter, M. E., & Lengyel, E. (2015). Microenvironment-induced down regulation of miR-193b drives ovarian cancer metastasis. Oncogene, 34(48), 5923–5932. https://doi.org/10.1038/onc.2015.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, H., Xu, Y., Qiu, W., Zhao, D., & Zhang, Y. (2015). Tissue miR-193b as a novel biomarker for patients with ovarian cancer. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 21, 3929–3934. https://doi.org/10.12659/msm.895407

    Article  CAS  PubMed  Google Scholar 

  35. Wu, W., Lin, Z., Zhuang, Z., & Liang, X. (2009). Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. European Journal of Cancer Prevention: Official Journal of the European Cancer Prevention Organization, 18(1), 50–55. https://doi.org/10.1097/CEJ.0b013e328305a07a

    Article  CAS  Google Scholar 

  36. Rauhala, H. E., Jalava, S. E., Isotalo, J., Bracken, H., Lehmusvaara, S., Tammela, T. L., Oja, H., & Visakorpi, T. (2010). miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. International Journal of Cancer, 127(6), 1363–1372. https://doi.org/10.1002/ijc.25162

    Article  CAS  PubMed  Google Scholar 

  37. Khordadmehr, M., Shahbazi, R., Sadreddini, S., & Baradaran, B. (2019). miR-193: A new weapon against cancer. Journal of Cellular Physiology, 234(10), 16861–16872. https://doi.org/10.1002/jcp.28368

    Article  CAS  PubMed  Google Scholar 

  38. Leivonen, S. K., Mäkelä, R., Östling, P., Kohonen, P., Haapa-Paananen, S., Kleivi, K., Enerly, E., Aakula, A., Hellström, K., Sahlberg, N., & Kristensen, V. N. (2009). Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene, 28(44), 3926–3936. https://doi.org/10.1038/onc.2009.241

    Article  CAS  PubMed  Google Scholar 

  39. Hulin, J.-A., Tommasi, S., Elliot, D., Hu, D. G., Lewis, B. C., & Mangoni, A. A. (2017). MiR-193b regulates breast cancer cell migration and vasculogenic mimicry by targeting dimethylarginine dimethylaminohydrolase 1. Scientific Reports, 7(1), 13996. https://doi.org/10.1038/s41598-017-14454-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, X.-F., Yan, P.-J., & Shao, Z.-M. (2009). Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene, 28(44), 3937–3948. https://doi.org/10.1038/onc.2009.245

    Article  CAS  PubMed  Google Scholar 

  41. Wu, K., Zhao, Z., Ma, J., Chen, J., Peng, J., Yang, S., & He, Y. (2017). Deregulation of miR-193b affects the growth of colon cancer cells via transforming growth factor-β and regulation of the SMAD3 pathway. Oncology Letters, 13(4), 2557–2562. https://doi.org/10.3892/ol.2017.5763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhong, Q., Wang, T., Lu, P., Zhang, R., Zou, J., & Yuan, S. (2014). miR-193b promotes cell proliferation by targeting SMAD3 in human glioma. Journal of Neuroscience Research, 92(5), 619–626. https://doi.org/10.1002/jnr.23339

    Article  CAS  PubMed  Google Scholar 

  43. Salvi, A., Conde, I., Abeni, E., Arici, B., Grossi, I., Specchia, C., Portolani, N., Barlati, S., & De Petro, G. (2013). Effects of miR-193a and sorafenib on hepatocellular carcinoma cells. Molecular Cancer, 12, 162. https://doi.org/10.1186/1476-4598-12-162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, C., Liu, S., Fu, H., Li, S., Tie, Y., Zhu, J., Xing, R., Jin, Y., Sun, Z., & Zheng, X. (2010). MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells. European Journal of Cancer, 46(15), 2828–2836. https://doi.org/10.1016/j.ejca.2010.06.127

    Article  CAS  PubMed  Google Scholar 

  45. Larsen, A. C., Mikkelsen, L. H., Borup, R., Kiss, K., Toft, P. B., von Buchwald, C., Coupland, S. E., Prause, J. U., & Heegaard, S. (2016). MicroRNA expression profile in conjunctival melanoma. Investigative Ophthalmology & Visual Science, 57(10), 4205–4212. https://doi.org/10.1167/iovs.16-19862

    Article  CAS  Google Scholar 

  46. Paterson, M. R., & Kriegel, A. J. (2017). MiR-146a/b: A family with shared seeds and different roots. Physiological Genomics, 49(4), 243–252. https://doi.org/10.1152/physiolgenomics.00133.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, Y., Wang, Y., Yu, L., Sun, C., Cheng, D., Yu, S., Wang, Q., Yan, Y., Kang, C., Jin, S., & An, T. (2013). miR-146b-5p inhibits glioma migration and invasion by targeting MMP16. Cancer Letters, 339(2), 260–269. https://doi.org/10.1016/j.canlet.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  48. Yu, C., Zhang, L., Luo, D., Yan, F., Liu, J., Shao, S., Zhao, L., Jin, T., Zhao, J., & Gao, L. (2018). MicroRNA-146b-3p promotes cell metastasis by directly targeting NF2 in human papillary thyroid cancer. Thyroid, 28(12), 1627–1641. https://doi.org/10.1089/thy.2017.0626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jagadeeswaran, G., Zheng, Y., Sumathipala, N., Jiang, H., Arrese, E. L., Soulages, J. L., Zhang, W., & Sunkar, R. (2010). Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics, 11(1), 52. https://doi.org/10.1186/1471-2164-11-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Su, Z., & Wu, F. (2020). Inflammatory factors induce thrombosis through the miR-146b-3p/p38MAPK/COX-2 pathway. BioMed Research International, 2020, 8718321. https://doi.org/10.1155/2020/8718321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Veronese, A., Lupini, L., Consiglio, J., Visone, R., Ferracin, M., Fornari, F., Zanesi, N., Alder, H., D’Elia, G., Gramantieri, L., & Bolondi, L. (2010). Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Research, 70(8), 3140–3149. https://doi.org/10.1158/0008-5472.CAN-09-4456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hao, J., Zhang, S., Zhou, Y., Hu, X., & Shao, C. (2011). MicroRNA 483-3p suppresses the expression of DPC4/SMAD4 in pancreatic cancer. FEBS Letters, 585(1), 207–213. https://doi.org/10.1016/j.febslet.2010.11.039

    Article  CAS  PubMed  Google Scholar 

  53. Yu, X., & Li, Z. (2016). The role of miRNAs in cutaneous squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 20(1), 3–9. https://doi.org/10.1111/jcmm.12649

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

ZVM, YA, MAM and AM contributed to the study conception and design. Human samples preparation was performed by SRM, HRM and SH and AM. Material preparation were performed by ZVM and AM. Data collection and analysis were performed by YA, AEB and AM. The first draft of manuscript was written by AM. All authors commented on previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ziba Veisi-Malekshahi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical principles and the national norms and standards for conducting medical research in Iran. Approval ID: IR.TUMS.MEDICINE.REC.1400.453, evaluated by Research Ethics Committees of School of Medicine—Tehran University of Medical Sciences.

Consent to Participate

Informed consent was obtained from all subjects involved in the study.

Consent to Publish

The authors claim that human research subjects gave their informed permission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadloo, A., Asgari, Y., Esmaeili-Bandboni, A. et al. The Potential of Circulating miR-193b, miR-146b-3p and miR-483-3p as Noninvasive Biomarkers in Cutaneous Melanoma Patients. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00893-x

Keywords

Navigation