Skip to main content

Advertisement

Log in

A Novel Pancreatic Cancer Hypoxia Status Related Gene Signature for Prognosis and Therapeutic Responses

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PAC) is a highly fatal and aggressive type of cancer. Hypoxia is a common feature of PAC. The aim of this study was to develop a hypoxia status-related prognostic model for predicting the survival outcomes in PAC. The data sets of PAC from The Cancer Genome Atlas and the International Cancer Genome Consortium were used to construct and validate the signature. A 6 hypoxia status-related differential expression genes prognostic model for predicting the survival outcomes was established. The Kaplan–Meier analysis and Received operating characteristic curve indicated the good performance of the signature at predicting overall survival. Univariate and Multivariate Cox regression revealed that the signature was an independent prognostic factor in PAC. Weighted Gene Co-expression Network Analysis and immune infiltration analysis indicated that Immune-related pathways and immune cell infiltration was mostly enriched in the low-risk group, which presented a better prognosis. We also evaluated the predictive of the signature for immunotherapy and chemoradiotherapy. Risk gene LY6D may be a potential prognostic predictor of PAC. This model can be used as an independent prognostic factor for predicting clinical outcomes and a possible classifier for response to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The mRNA-seq transcriptome profiling and corresponding clinical data of PAC patients for the training set (TCGA database, https://portal.gdc.cancer.gov/repository) and validation set (ICGC database, https://dcc.icgc.org/) were downloaded from UCSC Xena (https://xenabrowser.net/datapages/).

References

  1. Ilic, M., & Ilic, I. (2016). Epidemiology of pancreatic cancer. World Journal of Gastroenterology, 22(44), 9694–9705.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Neoptolemos, J. P., Kleeff, J., Michl, P., Costello, E., Greenhalf, W., & Palmer, D. H. (2018). Therapeutic developments in pancreatic cancer: Current and future perspectives. Nature reviews Gastroenterology & hepatology, 15(6), 333–348.

    Article  Google Scholar 

  3. Singhi, A. D., Koay, E. J., Chari, S. T., & Maitra, A. (2019). Early detection of pancreatic cancer: opportunities and challenges. Gastroenterology, 156(7), 2024–2040.

    Article  PubMed  Google Scholar 

  4. Ren, B., Cui, M., Yang, G., Wang, H., Feng, M., You, L., & Zhao, Y. (2018). Tumor microenvironment participates in metastasis of pancreatic cancer. Molecular Cancer, 17(1), 108.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mucaj, V., Shay, J. E., & Simon, M. C. (2012). Effects of hypoxia and HIFs on cancer metabolism. International Journal of Hematology, 95(5), 464–470.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, S. Y., Jeong, E. K., Ju, M. K., Jeon, H. M., Kim, M. Y., Kim, C. H., Park, H. G., Han, S. I., & Kang, H. S. (2017). Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Molecular Cancer, 16(1), 10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Parks, S. K., Cormerais, Y., & Pouyssegur, J. (2017). Hypoxia and cellular metabolism in tumour pathophysiology. Journal of Physiology, 595(8), 2439–2450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rabie, A. M. (2021). Potent toxic effects of Taroxaz-104 on the replication of SARS-CoV-2 particles. Chemico-Biological Interactions, 343, 109480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rabie, A. M. (2021). Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): Successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs. New Journal of Chemistry, 45(2), 761–771.

    Article  CAS  Google Scholar 

  10. Chen, S., Zhang, J., Chen, J., Wang, Y., Zhou, S., Huang, L., Bai, Y., Peng, C., Shen, B., Chen, H., et al. (2019). RER1 enhances carcinogenesis and stemness of pancreatic cancer under hypoxic environment. Journal of Experimental & Clinical Cancer Research, 38(1), 15.

    Article  CAS  Google Scholar 

  11. Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G., & Amelio, I. (2018). The hypoxic tumour microenvironment. Oncogenesis, 7(1), 10.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Foucher, E. D., Ghigo, C., Chouaib, S., Galon, J., Iovanna, J., & Olive, D. (2018). Pancreatic ductal adenocarcinoma: A strong imbalance of good and bad immunological cops in the tumor microenvironment. Frontiers in Immunology, 9, 1044.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, NZ), 3, 83–92.

    Google Scholar 

  14. Rabie, A. M. (2022). Potent inhibitory activities of the adenosine analogue cordycepin on SARS-CoV-2 replication. ACS Omega, 7(3), 2960–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rabie, A. M., Tantawy, A. S., & Badr, S. M. I. (2016). Design, synthesis, and biological evaluation of novel 5-substituted-2-(3,4,5-trihydroxyphenyl)-1,3,4-oxadiazoles as potent antioxidants. American Journal of Organic Chemistry, 6(2), 54–80.

    Article  CAS  Google Scholar 

  16. Rabie, A. M., Tantawy, A. S., & Badr, S. M. I. (2018). Design, synthesis, and biological evaluation of new 5-substituted-1,3,4-thiadiazole-2-thiols as potent antioxidants. Researcher, 10(7), 21–43.

    Google Scholar 

  17. Abou Khouzam, R., Rao, S. P., Venkatesh, G. H., Zeinelabdin, N. A., Buart, S., Meylan, M., Nimmakayalu, M., Terry, S., & Chouaib, S. (2021). An eight-gene hypoxia signature predicts survival in pancreatic cancer and is associated with an immunosuppressed tumor microenvironment. Frontiers in Immunology, 12, 680435.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chang, W. H., Forde, D., & Lai, A. G. (2019). A novel signature derived from immunoregulatory and hypoxia genes predicts prognosis in liver and five other cancers. Journal of Translational Medicine, 17(1), 14.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ding, J., He, X., Cheng, X., Cao, G., Chen, B., Chen, S., & Xiong, M. (2021). A 4-gene-based hypoxia signature is associated with tumor immune microenvironment and predicts the prognosis of pancreatic cancer patients. World Journal of Surgical Oncology, 19(1), 123.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shen, X., Zhong, J., He, J., Han, J., & Chen, N. (2022). Identification of m6A modification patterns and development of m6A-hypoxia prognostic signature to characterize tumor microenvironment in triple-negative breast cancer. Frontiers in Immunology, 13, 978092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, D., Huang, H., Zang, L., Gao, W., Zhu, H., & Yu, X. (2021). Development and verification of the hypoxia- and immune-associated prognostic signature for pancreatic ductal adenocarcinoma. Frontiers in Immunology, 12, 728062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vaupel, P., Höckel, M., & Mayer, A. (2007). Detection and characterization of tumor hypoxia using pO2 histography. Antioxidants & Redox Signaling, 9(8), 1221–1235.

    Article  CAS  Google Scholar 

  23. Buffa, F. M., Harris, A. L., West, C. M., & Miller, C. J. (2010). Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. British Journal of Cancer, 102(2), 428–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goldman, M. J., Craft, B., Hastie, M., Repečka, K., McDade, F., Kamath, A., Banerjee, A., Luo, Y., Rogers, D., Brooks, A. N., et al. (2020). Visualizing and interpreting cancer genomics data via the Xena platform. Nature Biotechnology, 38(6), 675–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhandari, V., Hoey, C., Liu, L. Y., Lalonde, E., Ray, J., Livingstone, J., Lesurf, R., Shiah, Y. J., Vujcic, T., Huang, X., et al. (2019). Molecular landmarks of tumor hypoxia across cancer types. Nature Genetics, 51(2), 308–318.

    Article  CAS  PubMed  Google Scholar 

  26. Schubert, M., Klinger, B., Klünemann, M., Sieber, A., Uhlitz, F., Sauer, S., Garnett, M. J., Blüthgen, N., & Saez-Rodriguez, J. (2018). Perturbation-response genes reveal signaling footprints in cancer gene expression. Nature Communications, 9(1), 20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The molecular signatures database (MSigDB) hallmark gene set collection. Cell Systems, 1(6), 417–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine, 16(4), 385–395.

    Article  CAS  PubMed  Google Scholar 

  31. Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., Li, B., & Liu, X. S. (2020). TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 48(W1), W509-w514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., & Alizadeh, A. A. (2018). Profiling tumor infiltrating immune cells with CIBERSORT. Methods in Molecular Biology (Clifton, NJ), 1711, 243–259.

    Article  CAS  Google Scholar 

  34. Aran, D., Hu, Z., & Butte, A. J. (2017). xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome biology, 18(1), 220.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Plattner, C., Finotello, F., & Rieder, D. (2020). Deconvoluting tumor-infiltrating immune cells from RNA-seq data using quanTIseq. Methods in Enzymology, 636, 261–285.

    Article  CAS  PubMed  Google Scholar 

  36. Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., Selves, J., Laurent-Puig, P., Sautès-Fridman, C., Fridman, W. H., et al. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology, 17(1), 218.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E., & Gfeller, D. (2017). Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife, 6.

  38. Sturm, G., Finotello, F., Petitprez, F., Zhang, J. D., Baumbach, J., Fridman, W. H., List, M., & Aneichyk, T. (2019). Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics, 35(14), i436–i445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39(1), 1–10.

    Article  PubMed  Google Scholar 

  40. Xu, L., Deng, C., Pang, B., Zhang, X., Liu, W., Liao, G., Yuan, H., Cheng, P., Li, F., Long, Z., et al. (2018). TIP: A web server for resolving tumor immunophenotype profiling. Cancer research, 78(23), 6575–6580.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4, Article17.

  42. Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D., Hackl, H., & Trajanoski, Z. (2017). Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Reports, 18(1), 248–262.

    Article  CAS  PubMed  Google Scholar 

  44. Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., Bindal, N., Beare, D., Smith, J. A., Thompson, I. R., et al. (2013). Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Research, 41(1), D955-961.

    CAS  PubMed  Google Scholar 

  45. Geeleher, P., Cox, N., & Huang, R. S. (2014). pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE, 9(9), e107468.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556-w560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartha, Á., & Győrffy, B. (2021). TNMplot.com: A web tool for the comparison of gene expression in normal, tumor and metastatic tissues. International Journal of Molecular Sciences, 22(5).

  48. Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., et al. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia (New York, NY), 25, 18–27.

    Article  CAS  Google Scholar 

  49. Sjöstedt, E., Zhong, W., Fagerberg, L., Karlsson, M., Mitsios, N., Adori, C., Oksvold, P., Edfors, F., Limiszewska, A., Hikmet, F., et al. (2020). An atlas of the protein-coding genes in the human, pig, and mouse brain. Science, 367, 6482.

    Article  Google Scholar 

  50. de Visser, K. E., & Joyce, J. A. (2023). The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 41(3), 374–403.

    Article  PubMed  Google Scholar 

  51. Liu, T., Chen, L., Gao, G., Liang, X., Peng, J., Zheng, M., Li, J., Ye, Y., & Shao, C. (2022). Development of a gene risk signature for patients of pancreatic cancer. Journal of Healthcare Engineering, 2022, 4136825.

    PubMed  PubMed Central  Google Scholar 

  52. Wu, M., Li, X., Liu, R., Yuan, H., Liu, W., & Liu, Z. (2020). Development and validation of a metastasis-related gene signature for predicting the overall survival in patients with pancreatic ductal adenocarcinoma. Journal of Cancer, 11(21), 6299–6318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, B., Xie, J., Li, Z., Su, D., Lin, L., Guo, X., Fu, Z., Zhou, Q., & Lu, Y. (2021). Seven-gene signature on tumor microenvironment for predicting the prognosis of patients with pancreatic cancer. Gland Surgery, 10(4), 1397–1409.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wu, M., Li, X., Zhang, T., Liu, Z., & Zhao, Y. (2019). Identification of a nine-gene signature and establishment of a prognostic nomogram predicting overall survival of pancreatic cancer. Frontiers in Oncology, 9, 996.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Harris, A. L. (2002). Hypoxia–a key regulatory factor in tumour growth. Nature Reviews Cancer, 2(1), 38–47.

    Article  CAS  PubMed  Google Scholar 

  56. Shannon, A. M., Bouchier-Hayes, D. J., Condron, C. M., & Toomey, D. (2003). Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treatment Reviews, 29(4), 297–307.

    Article  CAS  PubMed  Google Scholar 

  57. Daniel, S. K., Sullivan, K. M., Labadie, K. P., & Pillarisetty, V. G. (2019). Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma. Clinical and Translational Medicine, 8(1), 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luo, L., McGarvey, P., Madhavan, S., Kumar, R., Gusev, Y., & Upadhyay, G. (2016). Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K and Ly6H drive tumorigenesis and clinical outcome. Oncotarget, 7(10), 11165–11193.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang, J., Fan, J., Gao, W., Wu, Y., Zhao, Q., Chen, B., Ding, Y., Wen, S., Nan, X., & Wang, B. (2020). LY6D as a chemoresistance marker gene and therapeutic target for laryngeal squamous cell carcinoma. Stem Cells and Development, 29(12), 774–785.

    Article  CAS  PubMed  Google Scholar 

  60. Mayama, A., Takagi, K., Suzuki, H., Sato, A., Onodera, Y., Miki, Y., Sakurai, M., Watanabe, T., Sakamoto, K., Yoshida, R., et al. (2018). OLFM4, LY6D and S100A7 as potent markers for distant metastasis in estrogen receptor-positive breast carcinoma. Cancer Science, 109(10), 3350–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, T., Cui, R., Jeon, Y. J., Lee, J. H., Lee, J. H., Sim, H., Park, J. K., Fadda, P., Tili, E., Nakanishi, H., et al. (2014). Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proceedings of the National Academy of Sciences of the United States of America, 111(11), 4173–4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, C. J., Zhu, C. C., Xu, J., Wang, M., Zhao, W. Y., Liu, Q., Zhao, G., & Zhang, Z. Z. (2019). The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Molecular Cancer, 18(1), 115.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fang, Z., Zhao, J., Xie, W., Sun, Q., Wang, H., & Qiao, B. (2017). LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Medicine, 6(12), 2897–2908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luan, Y., Li, X., Luan, Y., Zhao, R., Li, Y., Liu, L., Hao, Y., Oleg Vladimir, B., & Jia, L. (2020). Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 Axis. Molecular Therapy Nucleic Acids, 19, 790–803.

    Article  CAS  PubMed  Google Scholar 

  65. Guo, Z., Wang, X., Yang, Y., Chen, W., Zhang, K., Teng, B., Huang, C., Zhao, Q., & Qiu, Z. (2020). Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer. Molecular Therapy Nucleic Acids, 22, 179–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, S., Zhang, Y., Huang, J., Wong, C. C., Zhai, J., Li, C., Wei, G., Zhao, L., Wang, G., Wei, H., et al. (2019). TRIM67 activates p53 to suppress colorectal cancer initiation and progression. Cancer Research, 79(16), 4086–4098.

    Article  CAS  PubMed  Google Scholar 

  67. Jiang, J., Ren, H., Xu, Y., Wudu, M., Wang, Q., Liu, Z., Su, H., Jiang, X., Zhang, Y., Zhang, B., et al. (2020). TRIM67 promotes the proliferation, migration, and invasion of non-small-cell lung cancer by positively regulating the notch pathway. Journal of Cancer, 11(5), 1240–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma, N. S., Gupta, V. K., Garrido, V. T., Hadad, R., Durden, B. C., Kesh, K., Giri, B., Ferrantella, A., Dudeja, V., Saluja, A., et al. (2020). Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. The Journal of Clinical Investigation, 130(1), 451–465.

    Article  CAS  PubMed  Google Scholar 

  69. Tan, Z., Xu, J., Zhang, B., Shi, S., Yu, X., & Liang, C. (2020). Hypoxia: A barricade to conquer the pancreatic cancer. Cellular and Molecular Life Sciences: CMLS, 77(16), 3077–3083.

    Article  CAS  PubMed  Google Scholar 

  70. Erkan, M., Kurtoglu, M., & Kleeff, J. (2016). The role of hypoxia in pancreatic cancer: A potential therapeutic target? Expert Review of Gastroenterology & Hepatology, 10(3), 301–316.

    Article  CAS  Google Scholar 

  71. Mace, T. A., Ameen, Z., Collins, A., Wojcik, S., Mair, M., Young, G. S., Fuchs, J. R., Eubank, T. D., Frankel, W. L., Bekaii-Saab, T., et al. (2013). Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Research, 73(10), 3007–3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monteran, L., & Erez, N. (1835). The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Frontiers in Immunology, 2019, 10.

    Google Scholar 

  73. Chouaib, S., Noman, M. Z., Kosmatopoulos, K., & Curran, M. A. (2017). Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene, 36(4), 439–445.

    Article  CAS  PubMed  Google Scholar 

  74. Yamasaki, A., Yanai, K., & Onishi, H. (2020). Hypoxia and pancreatic ductal adenocarcinoma. Cancer Letters, 484, 9–15.

    Article  CAS  PubMed  Google Scholar 

  75. Zhou, W. T., & Jin, W. L. (2021). B7–H3/CD276: An emerging cancer immunotherapy. Frontiers in Immunology, 12, 701006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yonesaka, K., Haratani, K., Takamura, S., Sakai, H., Kato, R., Takegawa, N., Takahama, T., Tanaka, K., Hayashi, H., Takeda, M., et al. (2018). B7–H3 negatively modulates CTL-mediated cancer immunity. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(11), 2653–2664.

    Article  CAS  PubMed  Google Scholar 

  77. Cong, F., Yu, H., & Gao, X. (2017). Expression of CD24 and B7–H3 in breast cancer and the clinical significance. Oncology Letters, 14(6), 7185–7190.

    PubMed  PubMed Central  Google Scholar 

  78. Li, Y., Yang, X., Wu, Y., Zhao, K., Ye, Z., Zhu, J., Xu, X., Zhao, X., & Xing, C. (2017). B7–H3 promotes gastric cancer cell migration and invasion. Oncotarget, 8(42), 71725–71735.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lecocq, Q., Keyaerts, M., Devoogdt, N., & Breckpot, K. (2020). The next-generation immune checkpoint LAG-3 and its therapeutic potential in oncology: Third time's a Charm. International Journal of Molecular Sciences, 22(1).

  80. Shan, C., Li, X., & Zhang, J. (2020). Progress of immune checkpoint LAG-3 in immunotherapy. Oncology Letters, 20(5), 207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim, W. M., Huang, Y. H., Gandhi, A., & Blumberg, R. S. (2019). CEACAM1 structure and function in immunity and its therapeutic implications. Seminars in Immunology, 42, 101296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dankner, M., Gray-Owen, S. D., Huang, Y. H., Blumberg, R. S., & Beauchemin, N. (2017). CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology, 6(7), e1328336.

    PubMed  PubMed Central  Google Scholar 

  83. Kleeff, J., Korc, M., Apte, M., La Vecchia, C., Johnson, C. D., Biankin, A. V., Neale, R. E., Tempero, M., Tuveson, D. A., Hruban, R. H., et al. (2016). Pancreatic cancer. Nature Reviews Disease Primers, 2, 16022.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Scientific research plan project of Shaanxi Provincial Department of Education (21JK0993).

Author information

Authors and Affiliations

Authors

Contributions

MR and HS designed the study, wrote the manuscript, and collected the corresponding datasets. JZ, and RZ assisted in the model construction and model validation. MR and JZ drew the figures as well as tables. HS supervised the whole project and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Min Ren or Huiru Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1. Box plot of the expression levels of the six genes used in the signature. Supplementary file1 (PDF 198 kb)

12033_2023_807_MOESM2_ESM.pdf

Figure S2. Kaplan-Meier curve of OS in PAC patients with high- and low-expression of 6 genes. Supplementary file2 (PDF 376 kb)

12033_2023_807_MOESM3_ESM.pdf

Figure S3. Association analysis between TMB and risk score (A) The association between TMB and risk score. (B) Kaplan-Meier curve of OS in PAC patients with high- and low-TMB. (C) Spearman correlation analysis between TMB and risk score. Supplementary file3 (PDF 540 kb)

Figure S4. Association between risk score and chemosensitivity in PAC. Supplementary file4 (PDF 509 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, M., Zhang, J., Zong, R. et al. A Novel Pancreatic Cancer Hypoxia Status Related Gene Signature for Prognosis and Therapeutic Responses. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00807-x

Keywords

Navigation