Skip to main content

Advertisement

Log in

Investigation of the TLR4 and IRF3 signaling pathway-mediated effects of monensin in colorectal cancer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Monensin is an ionophore antibiotic isolated from Streptomyces cinnamonensis with very strong antibacterial and antiparasitic effects. Although monensin is known to exhibit anticancer activity in different cancer types, there are a very limited number of studies on its anti-inflammatory effects in colorectal cancer (CRC) cells. The aim of this study was to investigate the TLR4/IRF3-mediated antiproliferative and anti-inflammatory effects of monensin in colorectal cancer cells. The dose- and time-dependent antiproliferative activity of monensin in colorectal cancer cells was determined by XTT method and its effects on mRNA expression changes of Toll-like receptors and IRF3 genes were determined by RT-PCR. TLR4 and Interferon Regulatory Factor 3 (IRF3) protein expression was evaluated by immunofluorescence method. TLR4 and type 1 interferon (IRF) levels were also evaluated by ELISA. IC50 value of monensin in HT29 cells was determined as 10.7082 µM at 48 h and 12.6288 µM at 48th for HCT116 cells. Monensin treatment decreased TLR4 and TLR7 and IRF3 mRNA expression in CRC cells. Monensin treatment decreased the expression level of IRF3 induced by LPS. Our study demonstrates for the first time the TLR4/IRF3-mediated anti-inflammatory effects of monensin in colorectal cancer cells. Further studies on the effects of monensin on TLR receptors in colorectal cancer cells are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the authors on reasonable request.

References

  1. Brenner H, Kloor M, Pox CP. Colorectal cancer. In: Shalu V, editor. The Lancet, vol. 383. London: Lancet Publishing Group; 2014. p. 1490–502.

    Google Scholar 

  2. Gamage CDB, Park SY, Yang Y, Zhou R, Taş İ, Bae WK, Kim H. Deoxypodophyllotoxin exerts anti-cancer effects on colorectal cancer cells through induction of apoptosis and suppression of tumorigenesis. Int J Molecular Sci. 2019. https://doi.org/10.3390/ijms20112612.

    Article  Google Scholar 

  3. Wang S, Wang L, Zhou Z, Deng Q, Li L, Zhang M, Liu L, Li Y. Leucovorin enhances the anti-cancer effect of bortezomib in colorectal cancer cells. Sci Rep. 2017;7(1):682. https://doi.org/10.1038/s41598-017-00839-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu M, Wang M, Jia H, Wu P. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Delivery. 2022;29(1):2513–38. https://doi.org/10.1080/10717544.2022.2104404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Secme M, Mutlu D, Elmas L, Arslan S. Assessing effects of caffeic acid on cytotoxicity, apoptosis, invasion, GST enzyme activity, oxidant, antioxidant status and micro-RNA expressions in HCT116 colorectal cancer cells. S Afr J Bot. 2023;157(2023):19–26.

    Article  CAS  Google Scholar 

  6. Rajendran V, Ilamathi HS, Dutt S, Lakshminarayana TS, Ghosh PC. Chemotherapeutic potential of monensin as an anti-microbial agent. Curr Top Med Chem. 2018;18(22):1976–86. https://doi.org/10.2174/1568026619666181129141151.

    Article  CAS  PubMed  Google Scholar 

  7. Zeng C, Long M, Lu Y. Monensin synergizes with chemotherapy in uveal melanoma through suppressing RhoA. Immunopharmacol Immunotoxicol. 2023;45(1):35–42. https://doi.org/10.1080/08923973.2022.2112219.

    Article  CAS  PubMed  Google Scholar 

  8. Markowska A, Kaysiewicz J, Markowska J, Huczyński A. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg Med Chem Lett. 2019;29(13):1549–54. https://doi.org/10.1016/j.bmcl.2019.04.045.

    Article  CAS  PubMed  Google Scholar 

  9. Serter Kocoglu S, Secme M, Oy C, Korkusuz G, Elmas L. Monensin, an antibiotic isolated from Streptomyces cinnamonensis, regulates human neuroblastoma cell proliferation via the PI3K/AKT signaling pathway and acts synergistically with rapamycin. Antibiotics (Basel, Switzerland). 2023;12(3):546. https://doi.org/10.3390/antibiotics12030546.

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Wu X, Zhang Z, Ma C, Wu T, Tang S, Zeng Z, Huang S, Gong C, Yuan C, Zhang L, Feng Y, Huang B, Liu W, Zhang B, Shen Y, Luo W, Wang X, Liu B, Lei Y, et al. Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Sci Rep. 2018;8(1):17914. https://doi.org/10.1038/s41598-018-36214-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi HS, Jeong EH, Lee TG, Kim SY, Kim HR, Kim CH. Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells. Tubercul Respir Dis. 2013;75(1):9–17. https://doi.org/10.4046/trd.2013.75.1.9.

    Article  Google Scholar 

  12. Ketola K, Vainio P, Fey V, Kallioniemi O, Iljin K. Monensin is a potent inducer of oxidative stress and inhibitor of androgen signaling leading to apoptosis in prostate cancer cells. Mol Cancer Ther. 2010;9(12):3175–85. https://doi.org/10.1158/1535-7163.MCT-10-0368.

    Article  CAS  PubMed  Google Scholar 

  13. Urbaniak A, Reed MR, Heflin B, Gaydos J, Piña-Oviedo S, Jędrzejczyk M, Klejborowska G, Stępczyńska N, Chambers TC, Tackett AJ, Rodriguez A, Huczyński A, Eoff RL, MacNicol AM. Anti-glioblastoma activity of monensin and its analogs in an organoid model of cancer. Biomed Pharmacother. 2022;153:113440. https://doi.org/10.1016/j.biopha.2022.113440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao S, Wang W, Zhou B, Cui X, Yang H, Zhang S. Monensin suppresses cell proliferation and invasion in ovarian cancer by enhancing MEK1 SUMOylation. Exp Ther Med. 2021;22(6):1390. https://doi.org/10.3892/etm.2021.10826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu J, Huang L, Zhang Y. Monensin inhibits proliferation, migration, and promotes apoptosis of breast cancer cells via downregulating UBA2. Drug Dev Res. 2020;81(6):745–53. https://doi.org/10.1002/ddr.21683.

    Article  CAS  PubMed  Google Scholar 

  16. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9(1):57–63. https://doi.org/10.1038/nrc2541.

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. https://doi.org/10.3389/fimmu.2014.00461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen X, Zhang Y, Fu Y. The critical role of Toll-like receptor-mediated signaling in cancer immunotherapy. Med Drug Discov. 2022. https://doi.org/10.1016/j.medidd.2022.100122.

    Article  Google Scholar 

  19. Sameer AS, Nissar S. Toll-like receptors (TLRs): structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. BioMed Res Int. 2021. https://doi.org/10.1155/2021/1157023.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Secme M, Kaygusuz O, Eroglu C, Dodurga Y, Colak OF, Atmaca P. Potential anticancer activity of the parasol mushroom, Macrolepiota procera (agaricomycetes), against the A549 human lung cancer cell line. Int J Med Mushrooms. 2018;20(11):1075–86. https://doi.org/10.1615/IntJMedMushrooms.2018028589.

    Article  PubMed  Google Scholar 

  21. AAT Bioquest, Inc. (2021, May 16). Quest Graph™ IC50 Calculator. Retrieved from https://www.aatbio.com/tools/ic50-calculator

  22. Serter K, Seçme M, Elmas L. Erianin, a promising agent in the treatment of glioblastoma multiforme triggers apoptosis in U373 and A172 glioblastoma cells. Archives of Biological Sciences. 2022;74(3):227–34. https://doi.org/10.2298/abs220219021s.

    Article  Google Scholar 

  23. Eroğlu Güneş C, Seçer Çelik F, Seçme M, Elmas L, Dodurga Y, Kurar E. Glycoside oleandrin downregulates toll-like receptor pathway genes and associated miRNAs in human melanoma cells. Gene. 2022;843:146805. https://doi.org/10.1016/j.gene.2022.146805.

    Article  CAS  PubMed  Google Scholar 

  24. Tumova L, Pombinho AR, Vojtechova M, Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V, Machonova O, Jindrich J, Zdrahal Z, Bartunek P, Korinek V. Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol Cancer Ther. 2014;13(4):812–22. https://doi.org/10.1158/1535-7163.MCT-13-0625.

    Article  CAS  PubMed  Google Scholar 

  25. Verma SP, Das P. Monensin induces cell death by autophagy and inhibits matrix metalloproteinase 7 (MMP7) in UOK146 renal cell carcinoma cell line. In vitro cellular & developmental biology. Animal. 2018;54(10):736–42. https://doi.org/10.1007/s11626-018-0298-7.

    Article  CAS  Google Scholar 

  26. Park WH, Kim ES, Jung CW, Kim BK, Lee YY. Monensin-mediated growth inhibition of SNU-C1 colon cancer cells via cell cycle arrest and apoptosis. Int J Oncol. 2003;22(2):377–82.

    CAS  PubMed  Google Scholar 

  27. Zhao S, Zhang Y, Zhang Q, Wang F, Zhang D. Toll-like receptors and prostate cancer. Front Immunol. 2014;5:352. https://doi.org/10.3389/fimmu.2014.00352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, Hsu D, Xu R, Harpaz N, Dannenberg AJ, Subbaramaiah K, Cooper HS, Itzkowitz SH, Abreu MT. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133(6):1869–81. https://doi.org/10.1053/j.gastro.2007.09.008.

    Article  CAS  PubMed  Google Scholar 

  29. Goto Y, Arigami T, Kitago M, Nguyen SL, Narita N, Ferrone S, Morton DL, Irie RF, Hoon DS. Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol Cancer Ther. 2008;7(11):3642–53. https://doi.org/10.1158/1535-7163.MCT-08-0582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 2007;44(11):2850–9. https://doi.org/10.1016/j.molimm.2007.01.022.

    Article  CAS  PubMed  Google Scholar 

  31. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8. https://doi.org/10.1126/science.282.5396.2085.

    Article  CAS  PubMed  Google Scholar 

  32. Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A, Álvarez-Vallina L, Sanz L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J Biol Chem. 2014;289(4):2457–68. https://doi.org/10.1074/jbc.M113.521161.

    Article  CAS  PubMed  Google Scholar 

  33. Ferrantini M, Capone I, Belardelli F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89(6–7):884–93. https://doi.org/10.1016/j.biochi.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

  34. Bien E, Balcerska A. Serum soluble interleukin 2 receptor alpha in human cancer of adults and children: a review. Biomarkers. 2008;13(1):1–26. https://doi.org/10.1080/13547500701674063.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SH, Kim KY, Yu SN, Park SG, Yu HS, Seo YK, Ahn SC. Monensin Induces PC-3 prostate cancer cell apoptosis via ROS production and Ca2+ homeostasis disruption. Anticancer Res. 2016;36(11):5835–43. https://doi.org/10.21873/anticanres.11168.

    Article  CAS  PubMed  Google Scholar 

  36. Urbaniak A, Delgado M, Antoszczak M, Huczyński A, Chambers TC. Salinomycin derivatives exhibit activity against primary acute lymphoblastic leukemia (ALL) cells in vitro. Biomed Pharmacother. 2018;99:384–90. https://doi.org/10.1016/j.biopha.2018.01.081.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Scientific Research Coordinatorship of Balıkesir University as the project numbered BAP-2021/072.

Author information

Authors and Affiliations

Authors

Contributions

MS contributed to conception, design, in vitro experiments, interpretation of data, writing of the paper, and final approval. SSK contributed to hypothesis, in vitro experiments, interpretation of data, and final approval.

Corresponding author

Correspondence to Mücahit Seçme.

Ethics declarations

Conflict of interest

Authors declared that there is no conflict of interest.

Ethical approval

Since it is a cell culture study, it does not require ethics committee approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seçme, M., Kocoglu, S.S. Investigation of the TLR4 and IRF3 signaling pathway-mediated effects of monensin in colorectal cancer cells. Med Oncol 40, 187 (2023). https://doi.org/10.1007/s12032-023-02055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02055-0

Keywords

Navigation