Skip to main content

Advertisement

Log in

Targeting crosstalk of signaling pathways in cancer stem cells: a promising approach for development of novel anti-cancer therapeutics

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Wnt, Hedgehog (Hh), and Notch signaling pathways are the evolutionarily conserved signaling pathways that regulate the embryonic development and also play crucial role in maintaining stemness properties of cancer stem cells (CSCs) and inducing epithelial-to-mesenchymal transition (EMT), metastasis, and angiogenesis. It has been highly challenging to inhibit the CSCs growth and proliferation as these are capable of evading chemotherapeutic drugs and cause cancer recurrence through multiple signaling pathways. Therefore, novel therapeutic strategies to target the key players involved in the crosstalk of these signaling pathways need to be developed. In this review, we have identified the interacting molecules of Wnt, Hh, and Notch pathways responsible for enhancing the malignant properties of CSCs. Analyzing the functions of these crosstalk molecules will help us to find an approach toward the development of new anti-cancer drugs for inhibition of CSCs growth and progression. Long non-coding RNAs (LncRNAs) play a significant role in various cellular processes, like chromatin remodeling, epigenetic modifications, transcriptional, and post-transcriptional regulations. Here, we have highlighted the research findings suggesting the involvement of LncRNAs in maintenance of the stemness properties of CSCs through modulation of the above-mentioned signaling pathways. We have also discussed about the different therapeutic approaches targeting those key players responsible for mediating the crosstalk between the pathways. Overall, this review article will surely help the cancer biologists to design novel anti-CSCs agents that will open up a new horizon in the field of anti-cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the information mentioned in this review article is available on the internet.

Code availability

Not applicable.

References

  1. Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol. 2017;24:158–81.

    Article  Google Scholar 

  2. Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, et al. Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol. 2020;235:790–803.

    Article  CAS  Google Scholar 

  3. Hsieh J-C, Rattner A, Smallwood PM, Nathans J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc Nat Acad Sci. 1999;96:3546–51.

    Article  CAS  Google Scholar 

  4. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13:1–16.

    Article  Google Scholar 

  5. Eastman Q, Grosschedl R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Biol. 1999;11:233–40.

    Article  CAS  Google Scholar 

  6. Giles RH, Van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta (BBA). 2003;1653:1–24.

    CAS  Google Scholar 

  7. Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science. 2007;317:372–6.

    Article  CAS  Google Scholar 

  8. Ryan KE, Chiang C. Hedgehog secretion and signal transduction in vertebrates. J Biol Chem. 2012;287:17905–13.

    Article  CAS  Google Scholar 

  9. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosnian J Basic Med Sci. 2018;18:8.

    Article  CAS  Google Scholar 

  10. Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol. 2000;228:151–65.

    Article  CAS  Google Scholar 

  11. Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009;16:633–47.

    Article  CAS  Google Scholar 

  12. Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022;7:1–33.

    Google Scholar 

  13. Noubissi FK, Yedjou CG, Spiegelman VS, Tchounwou PB. Cross-talk between Wnt and Hh signaling pathways in the pathology of basal cell carcinoma. Int J Environ Res Public Health. 2018;15:1442.

    Article  Google Scholar 

  14. Bertrand FE, Angus CW, Partis WJ, Sigounas G. Developmental pathways in colon cancer: crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle. 2012;11:4344–51.

    Article  CAS  Google Scholar 

  15. Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer. Front Genet. 2019;10:711.

    Article  CAS  Google Scholar 

  16. Chatterjee S, Sil PC. Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacol Res. 2019;142:251–61.

    Article  CAS  Google Scholar 

  17. Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.

    Article  CAS  Google Scholar 

  18. Gu B, Watanabe K, Sun P, Fallahi M, Dai X. Chromatin effector Pygo2 mediates Wnt-notch crosstalk to suppress luminal/alveolar potential of mammary stem and basal cells. Cell Stem Cell. 2013;13:48–61.

    Article  CAS  Google Scholar 

  19. Wang Z, Li Z, Wu Q, Li C, Li J, Zhang Y, et al. DNER promotes epithelial–mesenchymal transition and prevents chemosensitivity through the Wnt/β-catenin pathway in breast cancer. Cell Death Dis. 2020;11:1–16.

    Google Scholar 

  20. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12:445–64.

    Article  CAS  Google Scholar 

  21. Novellasdemunt L, Antas P, Li VS. Targeting Wnt signaling in colorectal cancer: A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol-Cell Physiol. 2015;309:C511–21.

    Article  CAS  Google Scholar 

  22. Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta (BBA). 2011;1815:197–213.

    CAS  Google Scholar 

  23. Moghbeli M, Abbaszadegan MR, Golmakani E, Forghanifard MM. Correlation of Wnt and NOTCH pathways in esophageal squamous cell carcinoma. J Cell Commun Signal. 2016;10:129–35.

    Article  Google Scholar 

  24. Quaranta R, Pelullo M, Zema S, Nardozza F, Checquolo S, Lauer DM, et al. Maml1 acts cooperatively with Gli proteins to regulate sonic hedgehog signaling pathway. Cell Death Dis. 2017;8:e2942–e2942.

    Article  CAS  Google Scholar 

  25. García-Heredia JM, Carnero A. NUMB and NUMBL differences in gene regulation. Oncotarget. 2018;9:9219.

    Article  Google Scholar 

  26. Whittle MC, Hingorani SR. Runx3 and cell fate decisions in pancreas cancer. RUNX Proteins Dev Cancer. 2017;4:333–52.

    Article  Google Scholar 

  27. Ju X, Ishikawa T, Naka K, Ito K, Ito Y, Oshima M. Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells. Cancer Sci. 2014;105:418–24.

    Article  CAS  Google Scholar 

  28. Kim BR, Na YJ, Kim JL, Jeong YA, Park SH, Jo MJ, et al. RUNX3 suppresses metastasis and stemness by inhibiting Hedgehog signaling in colorectal cancer. Cell Death Differ. 2020;27:676–94.

    Article  CAS  Google Scholar 

  29. Nishina S-I, Shiraha H, Nakanishi Y, Tanaka S, Matsubara M, Takaoka N, et al. Restored expression of the tumor suppressor gene RUNX3 reduces cancer stem cells in hepatocellular carcinoma by suppressing Jagged1-Notch signaling. Oncol Rep. 2011;26:523–31.

    CAS  Google Scholar 

  30. Gao J, Chen Y, Wu K-C, Liu J, Zhao Y-Q, Pan Y-L, et al. RUNX3 directly interacts with intracellular domain of Notch1 and suppresses Notch signaling in hepatocellular carcinoma cells. Exp Cell Res. 2010;316:149–57.

    Article  CAS  Google Scholar 

  31. Das Chagas PF, Baroni M, Brassesco MS, Tone LG. Interplay between the RNA binding-protein Musashi and developmental signaling pathways. J Gene Med. 2020;22:3136.

    Google Scholar 

  32. Sanchez-Diaz PC, Burton TL, Burns SC, Hung JY, Penalva LO. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy. BMC Cancer. 2008;8:1–12.

    Article  Google Scholar 

  33. Paluszczak J, Wiśniewska D, Kostrzewska-Poczekaj M, Kiwerska K, Grénman R, Mielcarek-Kuchta D, et al. Prognostic significance of the methylation of Wnt pathway antagonists—CXXC4, DACT2, and the inhibitors of sonic hedgehog signaling—ZIC1, ZIC4, and HHIP in head and neck squamous cell carcinomas. Clin Oral Invest. 2017;21:1777–88.

    Article  Google Scholar 

  34. Ge Q, Hu Y, He J, Chen F, Wu L, Tu X, et al. Zic1 suppresses gastric cancer metastasis by regulating Wnt/β-catenin signaling and epithelial-mesenchymal transition. FASEB J. 2020;34:2161–72.

    Article  CAS  Google Scholar 

  35. Fan H, Paiboonrungruan C, Zhang X, Prigge JR, Schmidt EE, Sun Z, et al. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells. Biochem Biophys Res Commun. 2017;493:833–9.

    Article  CAS  Google Scholar 

  36. Sparaneo A, Fabrizio FP, Muscarella LA. Nrf2 and notch signaling in lung cancer: near the crossroad. Oxid Med Cell Longev. 2016

  37. Comerford SA, Hinnant EA, Chen Y, Bansal H, Klapproth S, Rakheja D, et al. Hepatoblastoma modeling in mice places Nrf2 within a cancer field established by mutant β-catenin. JCI Insight. 2016;1:15.

    Article  Google Scholar 

  38. Leung HW, Lau EYT, Leung CON, Lei MML, Mok EHK, San Ma VW, et al. NRF2/SHH signaling cascade promotes tumor-initiating cell lineage and drug resistance in hepatocellular carcinoma. Cancer Lett. 2020;476:48–56.

    Article  CAS  Google Scholar 

  39. Holloway KR, Calhoun TN, Saxena M, Metoyer CF, Kandler EF, Rivera CA, et al. SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signaling. Proc Nat Acad Sci. 2010;107:9216–21.

    Article  CAS  Google Scholar 

  40. Simmons GE Jr, Pandey S, Nedeljkovic-Kurepa A, Saxena M, Wang A, Pruitt K. Frizzled 7 expression is positively regulated by SIRT1 and β-catenin in breast cancer cells. PLoS ONE. 2014;9:e98861.

    Article  Google Scholar 

  41. Wu Q, Wang Y, Qian M, Qiao Y, Zou S, Chen C, et al. Sirt1 suppresses Wnt/βCatenin signaling in liver cancer cells by targeting βCatenin in a PKAα-dependent manner. Cell Signall. 2017;37:62–73.

    Article  CAS  Google Scholar 

  42. O’Callaghan C, Vassilopoulos A. Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell. 2017;16:1208–18.

    Article  Google Scholar 

  43. Xie M, Liu M, He C-S. SIRT1 regulates endothelial Notch signaling in lung cancer. San Francisco: Public Library of Science San Francisco; 2012.

    Book  Google Scholar 

  44. Guo C, Wang X, Chen LP, Li M, Li M, Hu YH, et al. Long non-coding RNA MALAT1 regulates ovarian cancer cell proliferation, migration and apoptosis through Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22:3703–12.

    CAS  Google Scholar 

  45. Chang H-L, Bamodu OA, Ong J-R, Lee W-H, Yeh C-T, Tsai J-T. Targeting the epigenetic non-coding RNA MALAT1/Wnt signaling axis as a therapeutic approach to suppress stemness and metastasis in hepatocellular carcinoma. Cells. 2020;9:1020.

    Article  CAS  Google Scholar 

  46. Fu S, Wang Y, Li H, Chen L, Liu Q. Regulatory networks of LncRNA MALAT-1 in cancer. Cancer Manage Res. 2020;12:10181.

    Article  CAS  Google Scholar 

  47. Graham RP, Nair AA, Davila JI, Jin L, Jen J, Sukov WR, et al. Gastroblastoma harbors a recurrent somatic MALAT1–GLI1 fusion gene. Modern Pathol. 2017;30:1443–52.

    Article  CAS  Google Scholar 

  48. Lee M, Kim HJ, Kim SW, Park S-A, Chun K-H, Cho NH, et al. The long non-coding RNA HOTAIR increases tumour growth and invasion in cervical cancer by targeting the Notch pathway. Oncotarget. 2016;7:44558.

    Article  Google Scholar 

  49. Guo F, Cao Z, Guo H, Li S. The action mechanism of lncRNA-HOTAIR on the drug resistance of non-small cell lung cancer by regulating Wnt signaling pathway. Exp Ther Med. 2018;15:4885–9.

    Google Scholar 

  50. Ge X-S, Ma H-J, Zheng X-H, Ruan H-L, Liao X-Y, Xue W-Q, et al. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates W nt pathway. Cancer Sci. 2013;104:1675–82.

    Article  CAS  Google Scholar 

  51. Chen J, Shen Z, Zheng Y, Wang S, Mao W. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR. Int J Clin Exp Pathol. 2015;8:7878.

    Google Scholar 

  52. Dong C, Liu S, Lv Y, Zhang C, Gao H, Tan L, et al. Long non-coding RNA HOTAIR regulates proliferation and invasion via activating Notch signalling pathway in retinoblastoma. J Biosci. 2016;41:677–87.

    Article  CAS  Google Scholar 

  53. Sun SJ, Lin Q, Ma JX, Shi WW, Yang B, Li F. Long non-coding RNA NEAT1 acts as oncogene in NSCLC by regulating the Wnt signaling pathway. Eur Rev Med Pharmacol Sci. 2017;21:504–10.

    Google Scholar 

  54. Geng W, Guo X, Zhang L, Ma Y, Wang L, Liu Z, et al. Resveratrol inhibits proliferation, migration and invasion of multiple myeloma cells via NEAT1-mediated Wnt/β-catenin signaling pathway. Biomed Pharmacother. 2018;107:484–94.

    Article  CAS  Google Scholar 

  55. Jiang P, Xu H, Xu C, Chen A, Chen L, Zhou M, et al. NEAT1 contributes to the CSC-like traits of A549/CDDP cells via activating Wnt signaling pathway. Chem Biol Interact. 2018;296:154–61.

    Article  CAS  Google Scholar 

  56. Qian C-S, Li L-J, Huang H-W, Yang H-F, Wu D-P. MYC-regulated lncRNA NEAT1 promotes B cell proliferation and lymphomagenesis via the miR-34b-5p-GLI1 pathway in diffuse large B-cell lymphoma. Cancer Cell Int. 2020;20:1–13.

    Article  Google Scholar 

  57. He K, Zhu Z-B, Shu R, Hong A. LncRNA NEAT1 mediates progression of oral squamous cell carcinoma via VEGF-A and Notch signaling pathway. World J Surg Oncol. 2020;18:1–9.

    Google Scholar 

  58. Pirlog R, Drula R, Nutu A, Calin GA, Berindan-Neagoe I. The roles of the colon cancer associated transcript 2 (CCAT2) long non-coding RNA in cancer: a comprehensive characterization of the tumorigenic and molecular functions. Int J Mol Sci. 2021;22:12491.

    Article  CAS  Google Scholar 

  59. He P, Xiong G, Guo W, Jiang G, Li Y, Li H. Long non-coding RNA CCAT2 promotes prostate cancer cell proliferation and invasion by regulating the Wnt/β-catenin signaling pathway. Oncol Lett. 2020;20:1–1.

    Google Scholar 

  60. Xu Z, Liu C, Zhao Q, Lü J, Ding X, Luo A, et al. Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacol Res. 2020;152:104628.

    Article  CAS  Google Scholar 

  61. He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget. 2017;8:73282.

    Article  Google Scholar 

  62. Yu F, Geng W, Dong P, Huang Z, Zheng J. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis. 2018;9:1–12.

    Article  Google Scholar 

  63. Guo Q, Qian Z, Yan D, Li LI, Huang L. LncRNA-MEG3 inhibits cell proliferation of endometrial carcinoma by repressing Notch signaling. Biomed Pharmacother. 2016;82:589–94.

    Article  CAS  Google Scholar 

  64. Park S-A, Kim LK, Kim YT, Heo T-H, Kim HJ. Long non-coding RNA steroid receptor activator promotes the progression of endometrial cancer via Wnt/β-catenin signaling pathway. Int J Biol Sci. 2020;16:99.

    Article  CAS  Google Scholar 

  65. Eoh KJ, Paek J, Kim SW, Kim HJ, Lee HY, Lee SK, et al. Long non-coding RNA, steroid receptor RNA activator (SRA), induces tumor proliferation and invasion through the NOTCH pathway in cervical cancer cell lines. Oncol Rep. 2017;38:3481–8.

    CAS  Google Scholar 

  66. Kim LK, Park S, Yang Y, Kim YT, Heo T-H, Kim HJ. LncRNA SRA mediates cell migration, invasion, and progression of ovarian cancer via NOTCH signaling and epithelial–mesenchymal transition. Biosci Rep. 2021;41:18.

    Article  Google Scholar 

  67. Zhou H, Sun L, Wan F. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells. Oncol Lett. 2019;18:4393–402.

    CAS  Google Scholar 

  68. Xiao CH, Yu HZ, Guo CY, Wu ZM, Cao HY, Li WB, et al. Long non-coding RNA TUG1 promotes the proliferation of colorectal cancer cells through regulating Wnt/β-catenin pathway. Oncol Lett. 2018;16:5317–24.

    Google Scholar 

  69. Xu K, Zhang L. Inhibition of TUG1/miRNA-299-3p axis represses pancreatic cancer malignant progression via suppression of the notch1 pathway. Digest Dis Sci. 2020;65:1748–60.

    Article  CAS  Google Scholar 

  70. Ding Q, Mo F, Cai X, Zhang W, Wang J, Yang S, et al. LncRNA CRNDE is activated by SP1 and promotes osteosarcoma proliferation, invasion, and epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway. J Cell Biochem. 2020;121:3358–71.

    Article  CAS  Google Scholar 

  71. Lu Y, Sha H, Sun X, Zhang Y, Wu Y, Zhang J, et al. CRNDE: an oncogenic long non-coding RNA in cancers. Cancer Cell Int. 2020;20:1–10.

    Article  Google Scholar 

  72. Kang Y, Zhang S, Cao W, Wan D, Sun L. Knockdown of LncRNA CRNDE suppresses proliferation and P-glycoprotein-mediated multidrug resistance in acute myelocytic leukemia through the Wnt/β-catenin pathway. Biosci Rep. 2020;40:18.

    Article  Google Scholar 

  73. Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells. 2019;8:1015.

    Article  CAS  Google Scholar 

  74. Pan F, Zheng Y-B, Shi C-J, Zhang F, Zhang J, Fu W. H19-Wnt/β-catenin regulatory axis mediates the suppressive effects of apigenin on tumor growth in hepatocellular carcinoma. Eur J Pharmacol. 2021;893:173810.

    Article  CAS  Google Scholar 

  75. Wu B, Zhang Y, Yu Y, Zhong C, Lang Q, Liang Z, et al. Long noncoding RNA H19: a novel therapeutic target emerging in oncology via regulating oncogenic signaling pathways. Front Cell Dev Biol. 2021;4:3551.

    Google Scholar 

  76. Han J, Shen X. Long noncoding RNAs in osteosarcoma via various signaling pathways. J Clin Lab Anal. 2020;34:e23317.

    Article  CAS  Google Scholar 

  77. Yao F, Wang Q, Wu Q. The prognostic value and mechanisms of lncRNA UCA1 in human cancer. Cancer Manage Res. 2019;11:7685.

    Article  CAS  Google Scholar 

  78. Wang W, Hu W, Wang Y, An Y, Song L, Shang P, et al. Long non-coding RNA UCA1 promotes malignant phenotypes of renal cancer cells by modulating the miR-182-5p/DLL4 axis as a ceRNA. Mol Cancer. 2020;19:1–17.

    Article  CAS  Google Scholar 

  79. Song J, Shu H, Zhang L, Xiong J. Long noncoding RNA GAS5 inhibits angiogenesis and metastasis of colorectal cancer through the Wnt/β-catenin signaling pathway. J Cell Biochem. 2019;120:6937–51.

    Article  CAS  Google Scholar 

  80. Chen Z, Pan T, Jiang D, Jin L, Geng Y, Feng X, et al. The lncRNA-GAS5/miR-221-3p/DKK2 axis modulates ABCB1-mediated adriamycin resistance of breast cancer via the Wnt/β-catenin signaling pathway. Mol Therapy-Nucleic Acids. 2020;19:1434–48.

    Article  CAS  Google Scholar 

  81. Pei J, Wang B. Notch-1 promotes breast cancer cells proliferation by regulating LncRNA GAS5. Int J Clin Exp Med. 2015;8:14464.

    CAS  Google Scholar 

  82. Zhou C, Yi C, Yi Y, Qin W, Yan Y, Dong X, et al. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer. 2020;19:1–24.

    Article  Google Scholar 

  83. Ghafouri-Fard S, Omrani MD, Taheri M. Long noncoding RNA PVT1: a highly dysregulated gene in malignancy. J Cell Physiol. 2020;235:818–35.

    Article  CAS  Google Scholar 

  84. Qi G, Li L. Long non-coding RNA PVT1 contributes to cell growth and metastasis in non-small-cell lung cancer by regulating miR-361–3p/SOX9 axis and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 2020;126:110100.

    Article  CAS  Google Scholar 

  85. Zheng J, Yu F, Dong P, Wu L, Zhang Y, Hu Y, et al. Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152. Oncotarget. 2016;7:62886.

    Article  Google Scholar 

  86. Zeng S-G, Xie J-H, Zeng Q-Y, Dai S-H, Wang Y, Wan X-M, et al. lncRNA PVT1 promotes metastasis of non-small cell lung cancer through EZH2-mediated activation of hippo/NOTCH1 signaling pathways. Cell J (Yakhteh). 2021;23:21.

    Google Scholar 

  87. Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integrat Genom. 2022;20:1–16.

    Google Scholar 

  88. Dianat-Moghadam H, Heidarifard M, Mahari A, Shahgolzari M, Keshavarz M, Nouri M, et al. TRAIL in oncology: From recombinant TRAIL to nano-and self-targeted TRAIL-based therapies. Pharmacol Res. 2020;155:104716.

    Article  CAS  Google Scholar 

  89. Dianat-Moghadam H, Mahari A, Salahlou R, Khalili M, Azizi M, Sadeghzadeh H. Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy. Stem Cell Res Therapy. 2022;13:1–12.

    Article  Google Scholar 

  90. Kunej T, Obsteter J, Pogacar Z, Horvat S, Calin GA. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit Rev Clin Lab Sci. 2014;51:344–57.

    Article  CAS  Google Scholar 

  91. Gugnoni M, Ciarrocchi A. Long noncoding RNA and epithelial mesenchymal transition in cancer. Int J Mol Sci. 2019;20:1924.

    Article  CAS  Google Scholar 

  92. Ragusa M, Barbagallo C, Statello L, Condorelli AG, Battaglia R, Tamburello L, et al. Non-coding landscapes of colorectal cancer. World J Gastroenterol. 2015;21:11709.

    Article  CAS  Google Scholar 

  93. Kansara S, Pandey V, Lobie PE, Sethi G, Garg M, Pandey AK. Mechanistic involvement of long non-coding RNAs in oncotherapeutics resistance in triple-negative breast cancer. Cells. 2020;9:1511.

    Article  CAS  Google Scholar 

  94. Ren J, Zhang X, Cao J, Tian J, Luo J, Yu Y, et al. Radiosynthesis of a novel antisense imaging probe targeting LncRNA HOTAIR in malignant glioma. BMC Cancer. 2022;22:1–10.

    Article  Google Scholar 

  95. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016;22:861–8.

    Article  CAS  Google Scholar 

  96. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45:1895–910.

    Article  CAS  Google Scholar 

  97. Dutta A, Roy A, Chatterjee S. Long noncoding RNAs in cancer immunity: a new avenue in drug discovery. Drug Discov Today. 2021;26:264–72.

    Article  CAS  Google Scholar 

  98. Dianat-Moghadam H, Heidarifard M, Jahanban-Esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, et al. Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Controll Release. 2018;288:62–83.

    Article  CAS  Google Scholar 

  99. Zhen S, Li X. Application of CRISPR-Cas9 for long noncoding RNA genes in cancer research. Hum Gene Therapy. 2019;30:3–9.

    Article  CAS  Google Scholar 

  100. Peng L, Jiang J, Tang B, Nice EC, Zhang Y-Y, Xie N. Managing therapeutic resistance in breast cancer: from the lncRNAs perspective. Theranostics. 2020;10:10360.

    Article  CAS  Google Scholar 

  101. Dianat-Moghadam H, Mahari A, Heidarifard M, Parnianfard N, Pourmousavi-Kh L, Rahbarghazi R, et al. NK cells-directed therapies target circulating tumor cells and metastasis. Cancer Lett. 2021;497:41–53.

    Article  CAS  Google Scholar 

  102. Özeş AR, Wang Y, Zong X, Fang F, Pilrose J, Nephew KP. Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer. Sci Rep. 2017;7:1–11.

    Article  Google Scholar 

  103. Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA. Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc Nat Acad Sci. 2016;113:14013–8.

    Article  CAS  Google Scholar 

  104. Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, et al. Regulation of long non-coding RNAs by plant secondary metabolites: a novel anticancer therapeutic approach. Cancers. 2021;13:1274.

    Article  CAS  Google Scholar 

  105. Vallino L, Ferraresi A, Vidoni C, Secomandi E, Esposito A, Dhanasekaran DN, et al. Modulation of non-coding RNAs by resveratrol in ovarian cancer cells: In silico analysis and literature review of the anti-cancer pathways involved. J Tradit Complement Med. 2020;10:217–29.

    Article  Google Scholar 

  106. Chang L, Wang G, Jia T, Zhang L, Li Y, Han Y, et al. Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma. Oncotarget. 2016;7:23988.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology-Science and engineering Research Board (DST-SERB) for providing research funding to CNK.

Funding

This work was partly funded by the Department of Science and Technology-Science and engineering Research Board (DST-SERB) (EMR/2016/001377).

Author information

Authors and Affiliations

Authors

Contributions

SB involved in literature reviewing and writing and preparation of the original draft. CNK involved in conceptualization, writing of the final draft, and reviewing and editing of the manuscript.

Corresponding author

Correspondence to Chanakya Nath Kundu.

Ethics declarations

Conflict of interest

All the authors declare that they have no potential conflict of interest.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhal, S., Kundu, C.N. Targeting crosstalk of signaling pathways in cancer stem cells: a promising approach for development of novel anti-cancer therapeutics. Med Oncol 40, 82 (2023). https://doi.org/10.1007/s12032-022-01905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01905-7

Keywords

Navigation