Skip to main content

Advertisement

Log in

Targeting aurora kinase a (AURKA) in cancer: molecular docking and dynamic simulations of potential AURKA inhibitors

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The Aurora family of serine/threonine kinases in mammals are key regulators of mitotic progression and are commonly upregulated in human tumors. Since AURKA’s increased expression has been linked to cancer, AURKA inhibitors could reduce AURKA expression and function as potent therapeutic drugs. The study’s objective was to find and categorize inhibitors with a stronger affinity for AURKA. This study also aimed to identify AURKA’s expression profile and prognostic significance across pan-cancers. We looked into therapeutic compounds that were structurally comparable to MK8745 for their potential to selectively inhibit AURKA. We used drug likeliness analysis, MD simulation studies to evaluate the therapeutic possibility of screened MK8745 analogues. AURKA was found to be strongly upregulated in several cancers and is linked to worse overall and relapse-free survival. The Molecular docking and dynamic analysis revealed two new MK8745 analogues to be potent AURKA inhibitors with higher binding affinities and stabilities than MK8745. Furthermore, MK8745 analogues are potential replacements for MK8745 because they have strong binding affinity, which is consistent with MDS results, and have appropriate ADMET properties. Through basic, clinical, and preclinical research, the identification of novel compounds may open the door for their prospective use in the prevention of cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The breast cancer dataset utilized for the study is freely available at https://portal.gdc.cancer.gov/projects/TCGA-BRCA and survival data can be accessed at https://kmplot.com/analysis/index.php?p=service&cancer=breast

Abbreviations

BLCA:

Bladder urothelial carcinoma

ESCA:

Esophageal carcinoma

BRCA:

Breast invasive carcinoma

LIHC:

Liver hepatocellular carcinoma

HNSC:

Head and neck squamous cell carcinoma

KIRC:

Kidney renal clear cell carcinoma

STAD:

Stomach adenocarcinoma

LUAD:

Lung adenocarcinoma

PADA:

Pancreatic ductal adenocarcinoma

OV:

Ovarian serous cystadenocarcinoma

RCC:

Renal cell carcinoma

PDAC:

Pancreatic ductal adenocarcinoma

UCEC:

Uterine corpus endometrial carcinoma

KIRP:

Kidney renal papillary cell carcinoma

LIHC:

Liver hepatocellular carcinoma

SARC:

Sarcoma

MDS:

Molecular dynamic simulation

Rg:

Radius of gyration

SASA:

Solvent accessible surface area

RFS:

Relapse free survival

OS:

Overall survival

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Mehraj U, Aisha S, Sofi S, Mir MA. Expression pattern and prognostic significance of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) in breast cancer: a comprehensive analysis. Adv Cancer Biol Metastasis. 2022;4: 100037.

    Article  CAS  Google Scholar 

  3. Qayoom H, Mehraj BBAU, U, Mir MA,. Rising trends of cancers in Kashmir valley: distribution pattern, incidence and causes. J Oncol Res Treat. 2020;5(150):2.

    Google Scholar 

  4. Mir MA, Aisha S, Mehraj U. Triple-negative breast cancer - an aggressive subtype of breast cancer. In: Mir M, editor. Combinational Therapy in Triple Negative Breast Cancer. Cambridge: Academic Press; 2022. p. 1–28.

    Google Scholar 

  5. Mehraj U, Dar AH, Wani NA, Mir MA. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol. 2021;87(2):1–12.

    Article  Google Scholar 

  6. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  7. Mehraj U, Alshehri B, Khan AA, Bhat AA, Bagga P, Wani NA, et al. Expression pattern and prognostic significance of chemokines in breast cancer: an integrated bioinformatics analysis. Clin Breast Cancer. 2022;22(6):567–8.

    Article  PubMed  CAS  Google Scholar 

  8. Mehraj U, Sofi S, Alshehri B, Mir MA. Expression pattern and prognostic significance of CDKs in breast cancer: An integrated bioinformatic study. Cancer Biomark. 2022;34(3):1–15.

    Article  Google Scholar 

  9. Sofi S, Mehraj U, Qayoom H, Aisha S, Asdaq SMB, Almilaibary A, et al. Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol. 2022;39(6):1–16.

    Article  Google Scholar 

  10. Hu W, Kavanagh JJ, Deaver M, Johnston DA, Freedman RS, Verschraegen CF, et al. Frequent overexpression of STK15/Aurora-A/BTAK and chromosomal instability in tumorigenic cell cultures derived from human ovarian cancer. Oncol Res Featur Preclin Clin Cancer Ther. 2005;15(1):49–57.

    CAS  Google Scholar 

  11. Baba Y, Nosho K, Shima K, Irahara N, Kure S, Toyoda S, et al. Aurora-A expression is independently associated with chromosomal instability in colorectal cancer. Neoplasia. 2009;11(5):418–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Twu N-F, Yuan C-C, Yen M-S, Lai C-R, Chao K-C, Wang P-H, et al. Expression of Aurora kinase A and B in normal and malignant cervical tissue: high Aurora A kinase expression in squamous cervical cancer. Eur J Obste Gynecolo Reprod Biol. 2009;142(1):57–63.

    Article  CAS  Google Scholar 

  13. Jeng Y-M, Peng S-Y, Lin C-Y, Hsu H-C. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res. 2004;10(6):2065–71.

    Article  PubMed  CAS  Google Scholar 

  14. Cammareri P, Scopelliti A, Todaro M, Eterno V, Francescangeli F, Moyer MP, et al. Aurora-A is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cellsaurora-A in colorectal cancer stem cells. Can Res. 2010;70(11):4655–65.

    Article  CAS  Google Scholar 

  15. Lee HH, Zhu Y, Govindasamy KM, Gopalan G. Downregulation of Aurora-A overrides estrogen-mediated growth and chemoresistance in breast cancer cells. Endocr Relat Cancer. 2008;15(3):765–75.

    Article  PubMed  CAS  Google Scholar 

  16. Romain C, Paul P, Kim KW, Lee S, Qiao J, Chung DH. Targeting Aurora kinase-A downregulates cell proliferation and angiogenesis in neuroblastoma. J Pediatr Surg. 2014;49(1):159–65.

    Article  PubMed  Google Scholar 

  17. Yan M, Wang C, He B, Yang M, Tong M, Long Z, et al. Aurora-A kinase: a potent oncogene and target for cancer therapy. Med Res Rev. 2016;36(6):1036–79.

    Article  PubMed  Google Scholar 

  18. Nair JS, Ho AL, Schwartz GK. The induction of polyploidy or apoptosis by the Aurora A kinase inhibitor MK8745 is p53-dependent. Cell Cycle. 2012;11(4):807–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chowdhury A, Chowdhury S, Tsai MY. A novel Aurora kinase A inhibitor MK-8745 predicts TPX2 as a therapeutic biomarker in non-Hodgkin lymphoma cell lines. Leuk Lymphoma. 2012;53(3):462–71.

    Article  PubMed  CAS  Google Scholar 

  20. Baig MH, Ahmad K, Rabbani G, Danishuddin M, Choi I. Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr Neuropharmacol. 2018;16(6):740–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Agamah FE, Mazandu GK, Hassan R, Bope CD, Thomford NE, Ghansah A, et al. Computational/in silico methods in drug target and lead prediction. Brief Bioinform. 2020;21(5):1663–75.

    Article  PubMed  Google Scholar 

  22. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic acids Res. 2020;48(1):509–14.

    Article  Google Scholar 

  24. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.

    Article  PubMed  Google Scholar 

  25. Almansouri S, Zwyea S. Early prognosis of human renal cancer with Kaplan-Meier Plotter data analysis model. UK: IOP Publishing; 2020.

    Book  Google Scholar 

  26. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47(D1):D1102–9.

    Article  PubMed  Google Scholar 

  27. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.

    Article  CAS  Google Scholar 

  28. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23.

    Article  PubMed  CAS  Google Scholar 

  29. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–35.

    Article  CAS  Google Scholar 

  30. Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys. 1994;101(5):4177–89.

    Article  CAS  Google Scholar 

  31. Mir MA, Mehraj U. Double-crosser of the immune system: macrophages in tumor progression and metastasis. Curr Immunol Rev. 2019;15(2):172–84.

    Article  CAS  Google Scholar 

  32. Mehraj U, Dar AH, Wani NA, Mir MA. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol. 2021;87(2):147–58.

    Article  PubMed  Google Scholar 

  33. Mir MA, Qayoom H, Mehraj U, Nisar S, Bhat B, Wani NA. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):586–602.

    Article  PubMed  CAS  Google Scholar 

  34. Mehraj U, Ganai RA, Macha MA, Hamid A, Zargar MA, Bhat AA, et al. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: new challenges and therapeutic opportunities. Cell Oncol. 2021;44:1–21.

    Article  Google Scholar 

  35. Mehraj U, Qayoom H, Sofi S, Farhana P, Asdaq SMB, Mir MA. Cryptolepine Targets TOP2A and Inhibits Tumor Cell Proliferation in Breast Cancer Cells-An in vitro and in silico Study. Anti-cancer Agents Med Chem. 2022;22(17):3025–37.

    Article  Google Scholar 

  36. Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer. 2021;20(1):1–27.

    Article  Google Scholar 

  37. Mir MA, Mehraj U, Sheikh BA. Recent advances in chemotherapeutic implications of deguelin, a plant derived retinoid. Nat Prod J. 2020;10:1–13.

    Google Scholar 

  38. Iqbal J, Weisenburger DD, Chowdhury A, Tsai MY, Srivastava G, Greiner TC, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic γδ T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia. 2011;25(2):348–58.

    Article  PubMed  CAS  Google Scholar 

  39. Mehraj U, Mir IA, Ul Hussain M, Alkhanani M, Wani NA, Mir MA. Adapalene and doxorubicin synergistically promote apoptosis of TNBC cells by hyperactivation of the ERK1/2 pathway through ROS induction. Front Oncol. 2022;12:1–15. https://doi.org/10.3389/fonc.2022.938052.

    Article  Google Scholar 

  40. Thillainayagam M, Malathi K, Ramaiah S. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biomol Struct Dyn. 2018;36(15):3993–4009.

    Article  PubMed  CAS  Google Scholar 

  41. Aamir M, Singh VK, Dubey MK, Meena M, Kashyap SP, Katari SK, et al. In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against Fusarium wilt in tomato. Front pharmacol. 2018. https://doi.org/10.3389/fphar.2018.01038.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bhat BA, Mir WR, Sheikh BA, Rather MA, Mir MA. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L, a medicinal herb growing in Kashmir. India J Ethnopharmacol. 2022;291:115046.

    Article  PubMed  CAS  Google Scholar 

  43. Sofi S, Mehraj U, Qayoom H, Aisha S, Almilaibary A, Alkhanani M, et al. Targeting cyclin-dependent kinase 1 (CDK1) in cancer: molecular docking and dynamic simulations of potential CDK1 inhibitors. Med Oncol. 2022;39(9):1–15.

    Article  Google Scholar 

  44. Sofi S, Mehraj U, Qayoom H, Aisha S, Asdaq SMB, Almilaibary A, et al. Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Medical oncol (Northwood, London, England). 2022;39(6):106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha-65511, KSA for their support.

Funding

The author would like to thank Deanship of Scientific Research et al. AlBaha University for supporting this work under Project Number No. R-2022-XXX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Almilaibary.

Ethics declarations

Conflict of interest

The author declares no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almilaibary, A. Targeting aurora kinase a (AURKA) in cancer: molecular docking and dynamic simulations of potential AURKA inhibitors. Med Oncol 39, 246 (2022). https://doi.org/10.1007/s12032-022-01852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01852-3

Keywords

Navigation