Skip to main content

Advertisement

Log in

In silico bioinformatics analysis for identification of differentially expressed genes and therapeutic drug molecules in Glucocorticoid-resistant Multiple myeloma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM), second most common hematological malignancy, still remains irremediable because of acquisition of drug resistance. Glucocorticoid (GC) therapy, which is used as one of the key therapies against MM, is hindered by the incidence of GC resistance. The underlying mechanism of this acquired GC resistance in MM is not fully elucidated. Therefore, the present study was aimed to identify the differentially expressed genes (DEGs), associated micro RNAs (miRNAs), and transcription factors (TFs) from the microarray datasets of GC-resistant and GC-sensitive MM cell lines, obtained from Gene Expression Omnibus (GEO) database. DEGs were identified using GEO2R tool from two datasets and common DEGs were obtained by constructing Venn diagram. Then the Gene ontology (GO) and pathway enrichment analysis were performed using DAVID database. Genetic alterations in DEGs were examined using COSMIC database. Protein–protein interaction (PPI) network of DEGs was constructed using STRING database and Cytoscape tool. Network of interaction of DEGs and miRNAs as well as TFs were obtained and constructed using mirDIP, TRRUST, and miRNet tools. Drug gene interaction was studied to identify potential drug molecules by DGIdb tool. Six common DEGs, CDKN1A, CDKN2A, NLRP11, BTK, CD52, and RELN, were found to be significantly upregulated in GC-resistant MM and selected for further analysis. miRNA analysis detected hsa-mir-34a-5p that could interact with maximum target DEGs. Two TFs, Sp1 and Sp3, were found to regulate the expression of selected DEGs. The entire study may provide a new understanding about the GC resistance in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets analyzed in the present study are available in the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/).

Code availability

Not applicable.

References

  1. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group Updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–48. https://doi.org/10.1002/ajh.25791.

    Article  CAS  PubMed  Google Scholar 

  2. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. https://doi.org/10.1056/NEJMra1011442.

    Article  CAS  PubMed  Google Scholar 

  3. Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med. 2004;351:1860–73. https://doi.org/10.1056/NEJMra041875.s.

    Article  CAS  PubMed  Google Scholar 

  4. Kyle RA, Therneau TM, Rajkumar SV, et al. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med. 2006;354(13):1362–9. https://doi.org/10.1056/NEJMoa054494.

    Article  CAS  PubMed  Google Scholar 

  5. Landgren O, Kyle RA, Pfeiffer RM, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113(22):5412–7. https://doi.org/10.1182/blood-2008-12-194241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iida S. Mechanisms of action and resistance for multiple myeloma novel drug treatments. Int J Hematol. 2016;104(3):271–2. https://doi.org/10.1007/s12185-016-2040-0.

    Article  PubMed  Google Scholar 

  7. Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene. 1997;15(7):837–43. https://doi.org/10.1038/sj.onc.1201253.

    Article  CAS  PubMed  Google Scholar 

  8. Burwick N, Sharma S. Glucocorticoids in multiple myeloma: past, present, and future. Ann Hematol. 2019;98(1):19–28. https://doi.org/10.1007/s00277-018-3465-8.

    Article  CAS  PubMed  Google Scholar 

  9. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10. https://doi.org/10.1093/nar/30.1.207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palagani A, Op de Beeck K, Naulaerts S, et al. Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells. PLoS ONE. 2014;9(12):e113842. https://doi.org/10.1371/journal.pone.0113842.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thomas AL, Coarfa C, Qian J, et al. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma. Nucl Recept Signal. 2015;13:e006. https://doi.org/10.1621/nrs.13006.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Logie E, Chirumamilla CS, Perez-Novo C, et al. Covalent cysteine targeting of Bruton’s Tyrosine Kinase (BTK) family by Withaferin-A reduces survival of glucocorticoid-resistant multiple myeloma MM1 cells. Cancers (Basel). 2021;13(7):1618. https://doi.org/10.3390/cancers13071618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43:e47e47. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  Google Scholar 

  14. Da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.

    Article  CAS  Google Scholar 

  15. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2010;39:D945–50. https://doi.org/10.1093/nar/gkq929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:p1. https://doi.org/10.1126/scisignal.6273er1.

    Article  CAS  Google Scholar 

  17. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13. https://doi.org/10.1093/nar/gky1131.

    Article  CAS  PubMed  Google Scholar 

  18. Almeida D, Azevedo V, Silva A, Baumbach J. PetriScape—a plugin for discrete Petri net simulations in Cytoscape. J Integr Bioinform. 2016;13(1):284. https://doi.org/10.2390/biecoll-jib-2016-284.

    Article  PubMed  Google Scholar 

  19. Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, Lu R, Jurisica I. mirDIP 41-integrative database of human microRNA target predictions. Nucleic Acids Res. 2018;46(D1):D360–70. https://doi.org/10.1093/nar/gkx1144.

    Article  CAS  PubMed  Google Scholar 

  20. Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, Lee S, Kang B, Jeong D, Kim Y, Jeon HN, Jung H, Nam S, Chung M, Kim JH, Lee I. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46:D380–6. https://doi.org/10.1093/nar/gkx1013.

    Article  CAS  PubMed  Google Scholar 

  21. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 2016;44(W1):W135–41. https://doi.org/10.1093/nar/gkw288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cotto KC, Wagner AH, Feng Y-Y, Kiwala S, Coffman AC, Spies G, Wollam A, Spies NC, Griffith OL, Griffith M. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res. 2018;46:D1068–73. https://doi.org/10.1093/nar/gkx1143.

    Article  CAS  PubMed  Google Scholar 

  23. Wu D, Wang X. Application of clinical bioinformatics in lung cancer-specific biomarkers. Cancer Metastasis Rev. 2015;34(2):209–16. https://doi.org/10.1007/s10555-015-9564-2.

    Article  CAS  PubMed  Google Scholar 

  24. Mohr S, Leikauf GD, Keith G, Rihn BH. Microarrays as cancer keys: an array of possibilities. J Clin Oncol. 2002;20:31653175. https://doi.org/10.1200/jco.2002.12.073.

    Article  Google Scholar 

  25. Hideshima T, Anderson KC. Signaling pathway mediating myeloma cell growth and survival. Cancers (Basel). 2021;13(2):216. https://doi.org/10.3390/cancers1302021.

    Article  CAS  PubMed Central  Google Scholar 

  26. Jovanović KK, Escure G, Demonchy J, et al. Deregulation and targeting of TP53 pathway in multiple myeloma. Front Oncol. 2019;8:665. https://doi.org/10.3389/fonc.2018.00665.

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Andel H, Kocemba KA, Spaargaren M, Pals ST. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia. 2019;33(5):1063–75. https://doi.org/10.1038/s41375-019-0404-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 2005;122(6):957–68. https://doi.org/10.1016/j.cell.2005.08.029.

    Article  CAS  PubMed  Google Scholar 

  29. Kreis NN, Louwen F, Yuan J. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy. Cancers (Basel). 2019;11(9):1220. https://doi.org/10.3390/cancers11091220.

    Article  CAS  PubMed Central  Google Scholar 

  30. Huang Y, Wang W, Chen Y, et al. The opposite prognostic significance of nuclear and cytoplasmic p21 expression in resectable gastric cancer patients. J Gastroenterol. 2014;49(11):1441–52. https://doi.org/10.1007/s00535-013-0900-4.

    Article  CAS  PubMed  Google Scholar 

  31. Liu R, Wettersten HI, Park SH, Weiss RH. Small-molecule inhibitors of p21 as novel therapeutics for chemotherapy-resistant kidney cancer. Future Med Chem. 2013;5(9):991–4. https://doi.org/10.4155/fmc.13.56.

    Article  CAS  PubMed  Google Scholar 

  32. Romagosa C, Simonetti S, López-Vicente L, et al. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene. 2011;30(18):2087–97. https://doi.org/10.1038/onc.2010.614.

    Article  CAS  PubMed  Google Scholar 

  33. Coordes A, Lenz K, Qian X, Lenarz M, Kaufmann AM, Albers AE. Meta-analysis of survival in patients with HNSCC discriminates risk depending on combined HPV and p16 status. Eur Arch Otorhinolaryngol. 2016;273(8):2157–69. https://doi.org/10.1007/s00405-015-3728-0.

    Article  PubMed  Google Scholar 

  34. Ellwanger K, Becker E, Kienes I, et al. The NLR family pyrin domain-containing 11 protein contributes to the regulation of inflammatory signaling. J Biol Chem. 2018;293(8):2701–10. https://doi.org/10.1074/jbc.RA117.000152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Von Suskil M, Sultana KN, Elbezanti WO, et al. Bruton’s tyrosine kinase targeting in multiple myeloma. Int J Mol Sci. 2021;22(11):5707. https://doi.org/10.3390/ijms22115707.

    Article  CAS  Google Scholar 

  36. Yang Y, Shi J, Gu Z, et al. Bruton tyrosine kinase is a therapeutic target in stem-like cells from multiple myeloma. Cancer Res. 2015;75(3):594–604. https://doi.org/10.1158/0008-5472.CAN-14-2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Richardson PG, Bensinger WI, Huff CA, et al. Ibrutinib alone or with dexamethasone for relapsed or relapsed and refractory multiple myeloma: phase 2 trial results. Br J Haematol. 2018;180(6):821–30. https://doi.org/10.1111/bjh.15058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saito Y, Nakahata S, Yamakawa N, et al. CD52 as a molecular target for immunotherapy to treat acute myeloid leukemia with high EVI1 expression. Leukemia. 2011;25(6):921–31. https://doi.org/10.1038/leu.2011.36.

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Zhang G, Sui Y, et al. CD52 Is a Prognostic Biomarker and Associated With Tumor Microenvironment in Breast Cancer. Front Genet. 2020;11:578002. https://doi.org/10.3389/fgene.2020.578002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin L, Yan F, Zhao D, et al. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3. Oncotarget. 2016;7(9):9844–58. https://doi.org/10.18632/oncotarget.7151.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Qin X, Lin L, Cao L, et al. Extracellular matrix protein Reelin promotes myeloma progression by facilitating tumor cell proliferation and glycolysis. Sci Rep. 2017;7:45305. https://doi.org/10.1038/srep45305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin L, Wang P, Liu X, et al. Epigenetic regulation of reelin expression in multiple myeloma. Hematol Oncol. 2017;35(4):685–92. https://doi.org/10.1002/hon.2311.

    Article  CAS  PubMed  Google Scholar 

  43. Dou A, Zhang Y, Wang Y, Liu X, Guo Y. Reelin depletion alleviates multiple myeloma bone disease by promoting osteogenesis and inhibiting osteolysis. Cell Death Discov. 2021;7(1):219. https://doi.org/10.1038/s41420-021-00608-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 2019;38(1):53. https://doi.org/10.1186/s13046-019-1059-5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xiao X, Gu Y, Wang G, Chen S. c-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and apoptosis in multiple myeloma. Int J Biol Macromol. 2019;122:526–37. https://doi.org/10.1016/j.ijbiomac.2018.10.207.

    Article  CAS  PubMed  Google Scholar 

  46. Jin Z, Zhou S, Ye H, Jiang S, Yu K, Ma Y. The mechanism of SP1/p300 complex promotes proliferation of multiple myeloma cells through regulating IQGAP1 transcription. Biomed Pharmacother. 2019;119:109434. https://doi.org/10.1016/j.biopha.2019.109434.

    Article  CAS  PubMed  Google Scholar 

  47. Karki K, Harishchandra S, Safe S. Bortezomib Targets Sp Transcription Factors in Cancer Cells. Mol Pharmacol. 2018;94(4):1187–96. https://doi.org/10.1124/mol.118.112797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang B, Lyu H, Pei S, Song D, Ni J, Liu B. Cladribine in combination with entinostat synergistically elicits anti-proliferative/anti-survival effects on multiple myeloma cells. Cell Cycle. 2018;17(8):985–96. https://doi.org/10.1080/15384101.2018.1464849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

SG conceptualized the study, performed the analysis, and wrote the manuscript. SB supervised the study.

Corresponding author

Correspondence to Somnath Ghosal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosal, S., Banerjee, S. In silico bioinformatics analysis for identification of differentially expressed genes and therapeutic drug molecules in Glucocorticoid-resistant Multiple myeloma. Med Oncol 39, 53 (2022). https://doi.org/10.1007/s12032-022-01651-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01651-w

Keywords

Navigation