Skip to main content

Advertisement

Log in

Application of clinical bioinformatics in lung cancer-specific biomarkers

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The fact that lung cancer is a heterogeneous disease suggests that there is a high likelihood that effective lung cancer biomarkers will need to address patient-specific molecular defects, clinical characters, and aspects of the tumor microenvironment. In this transition, clinical bioinformatics tools and resources are the most appropriate means to improve the analysis, as major biological databases are now containing clinical data alongside genomics, proteomics, and other biological data. Clinical bioinformatics comprises a series of concepts and approaches that have been used successfully both to delineate novel biological mechanisms and to drive translational advances in individualized healthcare. In this article, we outline several of emerging clinical bioinformatics-based strategies as they apply specifically to lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90.

    Google Scholar 

  2. Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F., & Wong, K. K. (2014). Non-small-cell lung cancers: a heterogeneous set of diseases. Nature Reviews Cancer, 14(8), 535–546.

    Article  CAS  PubMed  Google Scholar 

  3. Nana-Sinkam, S. P., & Powell, C. A. (2013). Molecular biology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 143(5 Suppl), e30S–e39S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cagle, P. T., Allen, T. C., & Olsen, R. J. (2013). Lung cancer biomarkers: present status and future developments. Archives of Pathology and Laboratory Medicine, 137(9), 1191–1198.

    Article  CAS  PubMed  Google Scholar 

  5. Kelloff, G. J., & Sigman, C. C. (2012). Cancer biomarkers: selecting the right drug for the right patient. Nature Reviews Drug Discovery, 11(3), 201–214.

    Article  CAS  PubMed  Google Scholar 

  6. Zer, A., & Leighl, N. (2014). Promising targets and current clinical trials in metastatic non-squamous NSCLC. Frontiers Oncology, 4, 329.

    Article  Google Scholar 

  7. Kim, E. S., Hirsh, V., Mok, T., Socinski, M. A., Gervais, R., Wu, Y. L., et al. (2008). Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet, 372(9652), 1809–1818.

    Article  CAS  PubMed  Google Scholar 

  8. Korpanty, G. J., Graham, D. M., Vincent, M. D., & Leighl, N. B. (2014). Biomarkers that currently affect clinical practice in lung cancer: EGFR, ALK, MET, ROS-1, and KRAS. Frontiers Oncology, 4, 204.

    Article  Google Scholar 

  9. Mok, T. S. (2011). Personalized medicine in lung cancer: what we need to know. Nature Reviews Clinical Oncology, 8(11), 661–668.

    Article  CAS  PubMed  Google Scholar 

  10. Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., et al. (2005). Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute, 97(5), 339–346.

    Article  CAS  PubMed  Google Scholar 

  11. Giaccone, G., & Rodriguez, J. A. (2005). EGFR inhibitors: what have we learned from the treatment of lung cancer? Nature Clinical Practice Oncology, 2(11), 554–561.

    Article  CAS  PubMed  Google Scholar 

  12. da Cunha Santos, G., Shepherd, F. A., & Tsao, M. S. (2011). EGFR mutations and lung cancer. Annual Review of Pathology, 6, 49–69.

    Article  PubMed  Google Scholar 

  13. Wang, X., & Liotta, L. (2011). Clinical bioinformatics: a new emerging science. Journal of Clinical Bioinformatics, 1(1), 1. doi:10.1186/2043-9113-1-1.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott, K., et al. (2013). The Cancer Genome Atlas pan-cancer analysis project. Nature Genetics, 45(10), 1113–1120.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Akbani, R., Ng, P. K., Werner, H. M., Shahmoradgoli, M., Zhang, F., Ju, Z., et al. (2014). A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nature Communications, 5, 3887. doi:10.1038/ncomms4887.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Schwarz, E., Leweke, F. M., Bahn, S., & Liò, P. (2009). Clinical bioinformatics for complex disorders: a schizophrenia case study. BMC Bioinformatics, 10(Suppl 12), S6. doi:10.1186/1471-2105-10-S12-S6.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Nishino, M., Jackman, D. M., Hatabu, H., Yeap, B. Y., Cioffredi, L. A., Yap, J. T., et al. (2010). New Response Evaluation Criteria in Solid Tumors (RECIST) guidelines for advanced non-small cell lung cancer: comparison with original RECIST and impact on assessment of tumor response to targeted therapy. AJR. American Journal of Roentgenology, 195(3), W221–w228.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Lee, H. Y., Lee, K. S., Ahn, M. J., Hwang, H. S., Lee, J. W., Park, K., et al. (2011). New CT response criteria in non-small cell lung cancer: proposal and application in EGFR tyrosine kinase inhibitor therapy. Lung Cancer, 73(1), 63–69.

    Article  PubMed  Google Scholar 

  19. Imai, K., Minamiya, Y., Saito, H., Motoyama, S., Sato, Y., Ito, A., et al. (2014). Diagnostic imaging in the preoperative management of lung cancer. Surgery Today, 44(7), 1197–1206.

    Article  PubMed  Google Scholar 

  20. Peng, H. (2008). Bioimage informatics: a new area of engineering biology. Bioinformatics, 24(17), 1827–1836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bauer, S., Wiest, R., Nolte, L. P., & Reyes, M. (2013). A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine and Biology, 58(13), R97–R129.

    Article  PubMed  Google Scholar 

  22. Eklund, A., Dufort, P., Forsberg, D., & LaConte, S. M. (2013). Medical image processing on the GPU—past, present and future. Medical Image Analysis, 17(8), 1073–1094.

    Article  PubMed  Google Scholar 

  23. Caon, M., Sedlář, J., Bajger, M., & Lee, G. (2014). Computer-assisted segmentation of CT images by statistical region merging for the production of voxel models of anatomy for CT dosimetry. Australasian Physical and Engineering Sciences in Medicine, 37(2), 393–403.

    Article  CAS  PubMed  Google Scholar 

  24. Kipli, K., Kouzani, A. Z., & Williams, L. J. (2013). Towards automated detection of depression from brain structural magnetic resonance images. Neuroradiology, 55(5), 567–584.

    Article  PubMed  Google Scholar 

  25. Shi, P., Huang, Y., & Hong, J. (2014). Automated three-dimensional reconstruction and morphological analysis of dendritic spines based on semi-supervised learning. Biomedical Optics Express, 5(5), 1541–1553.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Meyer, C., Ma, B., Kunju, L. P., Davenport, M., & Piert, M. (2013). Challenges in accurate registration of 3-D medical imaging and histopathology in primary prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 40(Suppl 1), S72–S78. doi:10.1007/s00259-013-2382-2.

    Article  PubMed  Google Scholar 

  27. Yeh, F. C., Ye, Q., Hitchens, T. K., Wu, Y. L., Parwani, A. V., & Ho, C. (2014). Mapping stain distribution in pathology slides using whole slide imaging. Journal of Pathology Informatics, 5, 1. doi:10.4103/2153-3539.126140.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kovarik, M., Hronek, M., & Zadak, Z. (2014). Clinically relevant determinants of body composition, function and nutritional status as mortality predictors in lung cancer patients. Lung Cancer, 84(1), 1–6.

    Article  PubMed  Google Scholar 

  29. Sánchez-Lara, K., Turcott, J. G., Juárez, E., Guevara, P., Núñez-Valencia, C., Oñate-Ocaña, L. F., et al. (2012). Association of nutrition parameters including bioelectrical impedance and systemic inflammatory response with quality of life and prognosis in patients with advanced non-small-cell lung cancer: a prospective study. Nutrition and Cancer, 64(4), 526–534.

    Article  PubMed  Google Scholar 

  30. Prado, C. M., Lieffers, J. R., McCargar, L. J., Reiman, T., Sawyer, M. B., Martin, L., et al. (2008). Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. The Lancet Oncology, 9(7), 629–635.

    Article  PubMed  Google Scholar 

  31. Jafri, S. H., Shi, R., & Mills, G. (2013). Advance lung cancer inflammation index (ALI) at diagnosis is a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): a retrospective review. BMC Cancer, 13, 158. doi:10.1186/1471-2407-13-158.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Piskorz, L., Lesiak, T., Brocki, M., Klimek-Piskorz, E., Smigielski, J., Misiak, P., et al. (2011). Biochemical and functional indices of malnutrition in patients with operable, non-microcelullar lung cancer. Nutrición Hospitalaria, 26(5), 1025–1032. doi:10.1590/S0212-16112011000500016.

    CAS  PubMed  Google Scholar 

  33. Barbosa-Silva, M. C., & Barros, A. J. (2005). Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Current Opinion in Clinical Nutrition and Metabolic Care, 8(3), 311–317.

    Article  PubMed  Google Scholar 

  34. Chen, H., Song, Z., Qian, M., Bai, C., & Wang, X. (2012). Selection of disease-specific biomarkers by integrating inflammatory mediators with clinical informatics in AECOPD patients: a preliminary study. Journal of Cellular and Molecular Medicine, 16(6), 1286–1297.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chen, H., Wang, Y., Bai, C., & Wang, X. (2012). Alterations of plasma inflammatory biomarkers in the healthy and chronic obstructive pulmonary disease patients with or without acute exacerbation. Journal of Proteomics, 75(10), 2835–2843.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, H., & Wang, X. (2011). Significance of bioinformatics in research of chronic obstructive pulmonary disease. Journal of Clinical Bioinformatics, 1, 35. doi:10.1186/2043-9113-1-35.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Gottlieb, L. M., Tirozzi, K. J., Manchanda, R., Burns, A. R., & Sandel, M. T. (2015). Moving electronic medical records upstream: incorporating social determinants of health. American Journal of Preventive Medicine, 48(2), 215–218.

    Article  PubMed  Google Scholar 

  38. Amberger, J., Bocchini, C. A., Scott, A. F., & Hamosh, A. (2009). McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Research, 37(Database issue), D793–D796.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Junttila, M. R., & de Sauvage, F. J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 501(7467), 346–354.

    Article  CAS  PubMed  Google Scholar 

  40. Goldstein, D. B. (2009). Common genetic variation and human traits. The New England Journal of Medicine, 360(17), 1696–1698.

    Article  CAS  PubMed  Google Scholar 

  41. Schadt, E. E. (2009). Molecular networks as sensors and drivers of common human diseases. Nature, 461(7261), 218–223.

    Article  CAS  PubMed  Google Scholar 

  42. Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  PubMed  Google Scholar 

  43. Xu, J., & Li, Y. (2006). Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics, 22(22), 2800–2805.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J., Peng, X., Peng, W., & Wu, F. X. (2014). Dynamic protein interaction network construction and applications. Proteomics, 14(4–5), 338–352.

    Article  CAS  PubMed  Google Scholar 

  45. Wu, X., Chen, L., & Wang, X. (2014). Network biomarkers, interaction networks and dynamical network biomarkers in respiratory diseases. Clinical and Translational Medicine, 3, 16. doi:10.1186/2001-1326-3-16.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81100534,91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Rising Star Program (13QA1400800). The work was also supported by Zhongshan Distinguished Professor Grant (XDW), The Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Zhejiang Provincial Natural Science Foundation (Z2080988), Zhejiang Provincial Science Technology Department Foundation (2010C14011), and Ministry of Education, Academic Special Science and Research Foundation for PhD Education (20130071110043). The authors have no commercial or other associations that might pose a conflict of interest in connection with the submitted material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Wang, X. Application of clinical bioinformatics in lung cancer-specific biomarkers. Cancer Metastasis Rev 34, 209–216 (2015). https://doi.org/10.1007/s10555-015-9564-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9564-2

Keywords

Navigation